
Online Safety under Multiple Constraints and
Input Bounds using gatekeeper:

Theory and Applications
Devansh R. Agrawal, Student Member, IEEE , and Dimitra Panagou, Senior Member, IEEE

Abstract— This letter presents an approach to guaran-
tee online safety of a cyber-physical system under multi-
ple state and input constraints. Our proposed framework,
called gatekeeper, recursively guarantees the existence
of an infinite-horizon trajectory that satisfies all constraints
and system dynamics. Such trajectory is constructed using
a backup controller, which we define formally in this paper.
gatekeeper relies on a small number of verifiable assump-
tions, and is computationally efficient since it requires
optimization over a single scalar variable. We make two
primary contributions in this letter. (A) First, we develop the
theory of gatekeeper: we derive a sub-optimality bound
relative to a full nonlinear trajectory optimization problem,
and show how this can be used in runtime to validate
performance. This also informs the design of the backup
controllers and sets. (B) Second, we demonstrate in detail
an application of gatekeeper for multi-agent formation
flight, where each Dubins agent must avoid multiple ob-
stacles and weapons engagement zones, both of which are
nonlinear, nonconvex constraints. [Code]†

Index Terms— Constrained control; Optimization algo-
rithms; Aerospace

I. INTRODUCTION

INCREASING use of robotic systems in real-world appli-
cations necessitates advanced controllers that ensure safety,

robustness, and effectiveness in human-machine teaming [1].
This letter formalizes and builds upon our recent work on

online safety verification and control [2], which introduces
gatekeeper as a novel algorithmic component between
the planner and the controller of the autonomous system. To
briefly illustrate the principle behind gatekeeper, consider
a Unmanned Aerial Vehicle (UAV) navigating an unknown
environment. The UAV follows a nominal trajectory, generated
by its planner and tracked by its controller. At each iteration,
gatekeeper performs two key steps: (i) it evaluates the
currently known safe set (derived from onboard sensing), and
a backup set, which represents a region the UAV can retreat
to if the nominal trajectory is predicted to exit the safe set in
the future; (ii) it constructs a candidate trajectory by stitching
together the nominal trajectory (up to a future time horizon)
and a backup trajectory that leads safely into the backup set.

The authors would like to acknowledge the support of the
National Science Foundation (NSF) under grant no. 2137195.
Both D Agrawal (devansh@umich.edu) and D Panagou
(dpanagou@umich.edu) are with the Robotics Department,
University of Michigan, Ann Arbor, USA.

† https://github.com/dev10110/GatekeeperFormationFlight.jl

The candidate is accepted if it remains within the known safe
set. If so, it becomes the new committed trajectory to be
tracked by the controller. Otherwise, the UAV continues to
follow the previously committed trajectory. Because a new
trajectory is only committed when guaranteed to be safe,
the UAV is always lies within the safe set. Importantly,
gatekeeper only forward propagates candidate trajectories,
making it computationally efficient.

Literature Review: Various approaches guarantee safety of
autonomous systems. Model Predictive Control (MPC) offers a
natural framework, but solving nonlinear/nonconvex problems
online can be computationally expensive or can fail without
warning [3]–[5]. Control Barrier Functions (CBFs) enforce
safety constraints through Quadratic Programs (QPs) [6]–
[8], though finding a valid barrier function remains chal-
lenging in the face of multiple constraints and input bounds.
Reachability-based methods offer strong safety guarantees [9],
[10], but are intractable in high-dimensions.

Increasingly backup-based methods have become popu-
lar [11]–[17], where a precomputed fallback is used as the
system approaches unsafe conditions. Our framework extends
this idea while addressing key limitations. Compared to [11]
it explicitly considers nonlinear systems and nonconvex con-
straints. Compared to [12], [13], [17] instead of mixing the
nominal and backup control inputs, we check when it is
necessary to switch to the backup, allowing the system to
follow the nominal closely. By guaranteeing safety using
trajectories rather than controllers, we can enable performant
backup maneuvers. [14] reviews runtime assurance methods,
each variant appropriate for a different application. A common
challenge is in choosing when/how to intervene, which we
address by analyzing the optimality of backups.

Contributions: One open question is, how optimal is the
generated trajectory of gatekeeper, and how is this affected
by the choice of the backup controller and set? This letter for-
malizes gatekeeper by deriving suboptimality bounds, and
defining the formal construction of the backup controller. This
also provides a framework to analyze the (sub)optimality of
other safety architectures, since most methods (e.g. [11], [13])
do not consider/minimize the penalty on mission performance.

Second, we demonstrate the framework in a challenging
multi-agent formation flight problem. Each Dubins agent must
avoid multiple Engagement Zones (EZs), both of which are
nonlinear, nonconvex constraints that depend on the robot’s
state. This combination of tight input bounds, multiple con-

Author’s Copy. This paper has been accepted for publication to IEEE L-CSS 2025.

https://github.com/dev10110/GatekeeperFormationFlight.jl
https://github.com/dev10110/GatekeeperFormationFlight.jl


straints, and nonconvexity means that most modern approaches
fail to guarantee safety. Furthermore, we demonstrate that
our solution is computationally efficient and close-to-optimal
solutions can be computed in 1% of the time required to solve
this problem using IPOPT.

II. THEORY

Notation: N = {0, 1, 2, ...} is the set of natural numbers.
R,R≥0 denote reals, and non-negative reals. Sn+ is the set of
symmetric positive-definite matrices in Rn×n. The notation
{1 : N} defines the set {1, ..., N} ⊂ N. For v ∈ Rn, ∥v∥ =√
vT v, ∥v∥P =

√
vTPv. The set of piecewise continuous

functions w : T → D are denoted by L(T ,D), and T = R
when omitted. ⇒ denotes a set-valued map, e.g. S : T ⇒ X
means that for any t ∈ T , S(t) ⊂ X is a set.

A. Preliminaries

Consider a (possibly time-varying) dynamical system

ẋ = f(t, x, u), (1)

where x ∈ X ⊂ Rn is the state, and u ∈ U ⊂ Rm is
the control input. The dynamics f : R≥0 × X × U → Rn

are piecewise continuous in t and locally Lipschitz in x and
u. Given a feedback policy u = π(t, x) with π piecewise
continuous in t and locally Lipschitz in x, the closed-loop
system admits a unique solution over some interval.

Definition 1 (Trajectory). Let T = [ti, tf ) ⊂ R. A trajectory
is a pair of functions (p : T → X , u : T → U) satisfying

ṗ(t) = f(t, p(t), u(t)) ∀t ∈ (ti, tf ). (2)

The set of all trajectories from (t, x) ∈ R×X is

Φ(t, x) = {(p, u) : p(t) = x and (p, u) is a trajectory}. (3)

Let S : R ⇒ X denote the (possibly time-varying) set of
states satisfying constraints, e.g., a polytope {x : Ax ≤ b}
or superlevel set {x : h(x) ≥ 0}. The system satisfies the
constraints if x(t) ∈ S(t) ∀t ≥ t0. In principle, one can
compute the set of initial states that admit a safe trajectory:

F(t) =
{
x ∈ X : ∃(p, u) ∈ Φ(t, x) satisfying

p(τ) ∈ S(τ) ∀τ ≥ t
}
. (4)

Computing F(t) is generally intractable, as it involves solving
a reachability problem. Instead, we assume a known backup
set C : R ⇒ X :

Definition 2 (Backup set). C : R ⇒ X is a backup set if

C(t) ⊂ S(t) ∀t ∈ R, (5)

and the controller πB : R×X → U is such that for all ti ∈ R
the closed-loop system ẋ = f(t, x, πB(t, x)) satisfies

x(ti) ∈ C(ti) =⇒ x(t) ∈ C(t) ∀t ≥ ti. (6)

Lemma 1. If C is a backup set, then

C(t) ⊂ F(t) ⊂ S(t) ∀t ∈ R. (7)

Proof. If x ∈ F(t), then by definition, x = p(t) ∈ S(t). If
x ∈ C(t), the backup controller ensures x(τ) ∈ C(τ) ⊂ S(τ)
for all τ ≥ t, hence x ∈ F(t).

We specify the mission objectives in terms of a de-
sired/nominal trajectory for the system to follow. Formally,

Definition 3 (Nominal Trajectory). Given state xk ∈ X at
time tk ∈ R, a planner generates a nominal trajectory,

(pnomk , unom
k ) ∈ Φ(tk, xk)

defined over T = [tk, tk + TH ].

We cannot directly execute the nominal trajectory since it
may violate safety constraints and may not end in F(tk+TH),
risking future constraint violation.

B. Problem Statement
To address this, we seek a modified trajectory that is both

safe and tracks the nominal plan. We can pose this as:

minimize
p∈L(X ),
u∈L(U)

∫ tk+TH

tk

L (t, p(t), u(t), pnomk (t), unom
k (t)) dt (8a)

s.t. ṗ = f(t, p(t), u(t)), ∀t ∈ T , (8b)
p(t) ∈ S(t), ∀t ∈ T , (8c)
p(tk) = xk, (8d)
p(tk + TH + TB) ∈ C(tk + TH + TB), (8e)

with T = [tk, tk + TH + TB ].
This is a finite-horizon optimal control problem. The termi-

nal constraint (8e) ensures the trajectory ends in a backup set,
which is stricter than requiring p(tk+TH) ∈ F(tk+TH). We
choose the former since F is unknown. The objective (8a) is
to minimize the cost of deviating from the nominal trajectory.
Note, the cost only integrates over [tk, tk + TH ] a subset of
T . We make an assumption on L:

Assumption 1. L : R × X × U × X × U → R≥0 is positive
definite about (x2, u2):

L(t, x1, u1, x2, u2) ≥ 0,

L(t, x1, u1, x2, u2) = 0 ⇐⇒ (x1 = x2 and u1 = u2).

for all t ∈ R, x1, x2 ∈ X , u1, u2 ∈ U .

Examples satisfying this include:

L1(·) = ∥x1 − x2∥2Q + ∥u1 − u2∥2R , (9a)

L2(·) = e−γ(t−tk)L1(·), (9b)

L3(·) =

{
0 if x1 = x2 and u1 = u2,

1 else.
(9c)

where Q ∈ Sn+, R ∈ Sm+ , γ > 0
The problem addressed in this paper is as follows:

Problem 1. Design a method to solve (8) under Assumption 1
and assuming a backup set is known for the system. If solutions
are suboptimal, quantify the suboptimality.

In summary, the goal is to compute a committed trajec-
tory (pcom, ucom) that guarantees safety over [tk,∞) while



minimizing deviation from the nominal trajectory. As (8) is
typically nonconvex, our focus is on efficient computation of
feasible solutions and real-time suboptimality bounds.

C. Constructing candidate trajectories

Here we describe our solution, a recursive method for
constructing committed trajectories. The main result, Theo-
rem 1, proves feasibility and quantifies suboptimality. While
the core principles of gatekeeper as presented in [2] remain
unchanged, key differences are highlighted in Remark 2.
gatekeeper triggers at discrete times tk ∈ R for k ∈ N.

Each candidate trajectory is a concatenation of two segments:
the nominal trajectory (as defined in Definition 3) and a backup
trajectory, defined as follows:

Definition 4 (Backup Trajectory). Let TB ≥ 0. For any ts ∈ R
and xs ∈ X , a trajectory (pbak, ubak) ∈ Φ(ts, xs) defined on
[ts,∞) is a backup trajectory from (ts, xs) if

pbak(ts + TB) ∈ C(ts + TB), (10)

and for all t ≥ ts + TB , ubak satisfies

ubak(t) = πB(t, pbak(t)). (11)

In words, a trajectory (pbak, ubak) is a backup trajectory
from the specified (ts, xs), if (A) trajectory is dynamically
feasible starting from (ts, xs) (since (pbak, ubak) ∈ Φ(t, x)),
(B) the trajectory reaches C within TB seconds, and (C) after
reaching C, the control input corresponds to the backup
controller. Recall from the definition of πB this ensures the
trajectory remains within C. Thus for any backup trajectory,
we have pbak(τ) ∈ C(τ) for all τ ≥ ts + TB .

A candidate trajectory is one that switches between execut-
ing the nominal trajectory and a backup trajectory. This idea
of stitching together a section of the nominal trajectory with
a backup trajectory is a core principle of gatekeeper.

Definition 5 (Candidate trajectory). Consider a system with
state xk ∈ X at time tk ∈ R. Let the nominal trajectory
be (pnomk , unom

k ) ∈ Φ(tk, xk) defined over [tk, tk + TH ]. A
candidate trajectory with switch time ts ∈ [tk, tk + TH ] is
(pcank , ucan

k ) ∈ Φ(tk, xk) defined by

(pcank (τ), ucan
k (τ)) =

{
(pnomk (τ), unom

k (τ)) if τ ∈ [tk, ts),

(pbakk (τ), ubak
k (τ)) if τ ≥ ts,

(12)

where (pbakk , ubak
k ) is a backup trajectory from (ts, p

nom
k (ts)).

A candidate is valid if it is safe over a finite horizon:

Definition 6 (Valid). A candidate trajectory (pcank , ucan
k ) ∈

Φ(tk, xk) with switch time ts ∈ R is valid if

pcank (t) ∈ S(t) ∀t ∈ [tk, ts + TB ], (13)

where TB ≥ 0 is the horizon of the backup trajectory.

This immediately leads to the following lemma:

Lemma 2. Consider a system with state xk ∈ X at time tk ∈
R. If (pcank , ucan

k ) ∈ Φ(tk, xk) is a valid candidate trajectory,

then

pcank (t) ∈ S(t) ∀t ≥ tk. (14)

Proof. First we prove that pcank (t) ∈ S(t) for all t ≥ tk. Since
the candidate is valid, we have pcank (t) ∈ S(t) ∀t ∈ [tk, tb]
where tb = ts + TB . Since the candidate trajectory follows
the backup trajectory for all t ∈ [ts, tb], it reaches the backup
set at tb, i.e., pcank (tb) ∈ C(tb). For all t ≥ tb the control
input matches the backup controller, and because πB renders
C forward invariant, it follows that pcank (t) ∈ C(t)∀t ≥ tb.
Finally since for any backup set C(t) ⊂ S(t) ∀t ∈ R, we
have pcank (t) ∈ C(t) ⊂ S(t) ∀t ≥ tb. Therefore, we have
pcank (t) ∈ S(t) for all t ≥ tk.

This proves that any valid candidate trajectory is a safe
trajectory for all future time, but only requires one to check
safety over a finite horizon [tk, ts + TB ]. This finite-horizon
check enables practical implementation of the framework.

D. Optimality of candidate trajectories
Beyond safety, we would also like our trajectories to be

optimal. Here we address: (A) how should one construct the
backup trajectory, and (B) how should one select the best
candidate trajectory, i.e., select the best switching time ts?

Recall that L(·) is the running cost, as defined in (8a). The
objective functional (8a) can be split into two intervals:

J(p, u) =

∫ tk+TH

tk

L(·)dt (15a)

=

∫ ts

tk

L(·)dt︸ ︷︷ ︸
J1(p,u,ts)

+

∫ tk+TH

ts

L(·)dt︸ ︷︷ ︸
J2(p,u,ts)

(15b)

where (·) = (t, p(t), u(t), pnomk (t), unom
k (t)), and ts ∈ [tk, tk+

TH ] is a switch time. Then we have the following:

J(pcan, ucan)

= J1(p
can, ucan, ts) + J2(p

can, ucan, ts) (16a)

= J1(p
nom, unom, ts) + J2(p

bak, ubak, ts) (16b)

= 0 + J2(p
bak, ubak, ts) (16c)

where the J1 term is zero, since for all t ∈ [tk, ts], the
candidate trajectory matches the nominal trajectory. Thus,
by Assumption 1, the integrand is L(·) = 0, and therefore
J1(·) = 0. We can thus propose a solution to Problem 1:

Theorem 1. Suppose at time tk ∈ R the system state is xk ∈
X . Let (pnomk , unom

k ) ∈ Φ(tk, xk) be the nominal trajectory.
Suppose (pcank , ucan

k ) ∈ Φ(tk, xk) is a candidate trajectory
with switch time ts ∈ [tk, tk + TH ].

If (pcank , ucan
k ) is a valid candidate trajectory, then

(A) the candidate trajectory is a feasible solution to (8),
(B) the suboptimality of the candidate trajectory with respect

to (8) is upper-bounded by 1

B̄ =

∫ tk+TH

ts

L(·)dt (17)

1The integral in (17) is over [ts, tk + TH ], not [tk, tk + TH ] as in (8a).



where (·) = (t, pcank (t), ucan
k (t), pnom(t), unom(t)).

Proof. Claim A: Since (pcank , ucan
k ) ∈ Φ(tk, xk) it must

satisfy (8b) and (8d). Since it is valid, it must satisfy (8c), and
at time tb = ts+TB ≤ tk+TH+TB (since ts ∈ [tk, tk+TH ])
the trajectory reaches pcank (tb) ∈ C(tb). Since for t ≥ tb the
candidate trajectory remains within C, it satisfies (8e).

Claim B: For convenience, let tH = tk + TH and tHB =
tk+TH+TB . Suppose (poptk , uopt

k ) ∈ Φ(tk, xk) is the optimal
solution of (8), which exists since (pcank , ucan

k ) is feasible.
First, notice that it is possible for J(poptk , uopt

k ) ≥ 0. Sup-
pose the nominal trajectory is safe (i.e., pnomk (t) ∈ S(t) ∀t ∈
[tk, tH ]) and terminates in the backup set (i.e., pnomk (tH) ∈
C(tH)). Then, the candidate trajectory (p′, u′) with switch
time ts = tH is valid. Notice that J(p′, u′) = 0 since for
all t ∈ [tk, tH ] the candidate trajectory is equal to the nominal
trajectory, and thus L(·) = 0. Therefore, it is possible for
J(p, u) = 0 in (8), and thus J(poptk , uopt

k ) ≥ 0.
Second, notice that the cost of the candidate trajectory is

J(pcank , ucan
k ) = J1(p

can
k , ucan

k , ts)︸ ︷︷ ︸
=0

+ J2(p
can
k , ucan

k , ts)︸ ︷︷ ︸
=B̄

where the the first term is zero since over the interval t ∈
[tk, ts] the candidate trajectory equals the nominal trajectory.
Therefore, 0 ≤ J(poptk , uopt

k ) ≤ J(pcank , ucan
k ) = B̄, and thus

J(pcank , ucan
k )− J(poptk , uopt

k ) ≤ B̄,

i.e., B̄ is the maximum suboptimality.

Corollary 1. The optimal candidate trajectory has

ts ∈ argmin
t′s∈[tk,tk+TH ]

J2(p
bak, ubak, t′s). (18)

where for any t′s ∈ R, (pbak, ubak) is a backup trajectory from
(t′s, p

nom
k (t′s)).

E. Optimal backup trajectories

In principle, as part of solving (18), one could also optimize
over the set of backup trajectories. For any given t′s, suppose
the backup trajectory solves

minimize
(p,u)∈Φ(t′s,p

nom
k (t′s))

J2(p, u, t
′
s) (19a)

s.t. p(t) ∈ S(t), ∀t ∈ T , (19b)
p(t′s + TB) ∈ C(t′s + TB), (19c)

where T = [t′s, tk + TB ]. In this case, we can conclude:

Lemma 3. Let (pnomk , unom
k ) ∈ Φ(tk, xk) be the nominal

trajectory. A candidate trajectory (pcan, ucan) ∈ Φ(tk, xk)
with switch time ts is an optimal solution of (8) if

(A) the candidate trajectory is valid,
(B) the backup trajectory is the solution of (19), and
(C) the switch time ts is chosen according to (18).

Proof. Notice that a candidate trajectory satisfying conditions

(A, B, C) is the solution of the problem

minimize
p∈L(X ),u∈L(U)
ts∈[tk,tk+TH ]

J1(p, u, ts) + J2(p, u, ts) (20a)

s.t. (8b), (8c), (8d), (8e) (20b)

which is equivalent to problem (8), except with the additional
variable ts. This additional variable does not affect the feasibil-
ity or optimality of the problem, therefore these optimization
problems (and solutions) are equivalent.

Remark 1. The key insight from Lemma 3 is that if an optimal
backup trajectory is known, solving (18) yields the optimal
solution to (8), but without requiring one to solve a trajectory
optimization problem. gatekeeper is particularly useful
when feasible (but not necessarily optimal) backup trajectories
can be efficiently generated. In such cases, (18) — a scalar
line search over a bounded interval — yields a suboptimal
solution to (8), with a suboptimality bound given by (17).

F. The gatekeeper architecture

gatekeeper is an intermediary module between the plan-
ner and the low-level controller. It uses the planner’s nominal
trajectory to construct a committed trajectory that is defined for
all future time, guaranteed to be safe, and minimally deviates
from the nominal. At each planning step k at time tk and state
xk, given a nominal trajectory (pnomk , unom

k ) gatekeeper
constructs candidate trajectories for each switch time ts ∈
[tk, tk +TH ] (see Definition 5). Valid candidates are checked,
and if any exist, the one minimizing the cost in (18) is selected;
otherwise, the committed trajectory remains unchanged. This
guarantees safety for all future time if a valid committed exists
initially.

While the optimal backup could be found by solving (19),
this may be computationally expensive. Instead, efficient
suboptimal backups can still yield good performance, with
online-computable suboptimality bounds given in Theorem 1,
enabling runtime monitoring of mission progress.

Remark 2. The gatekeeper framework was first intro-
duced in [2], but this work includes several key extensions:

• Whereas [2] selected the switch time ts to maximize the
validity duration of the nominal trajectory (i.e., minimiz-
ing the backup duration), we generalize this by allowing
arbitrary cost functions in (18).

• Disturbances are handled in [2] but are omitted here for
clarity; the analysis can be extended to include them.

• We introduce a formal optimality framework, including
sufficient conditions for optimality (Lemma 3) and subop-
timality bounds (Theorem 1), which were not considered
in [2] or prior works like [11], [13].

III. APPLICATION

We demonstrate the proposed architecture to a multi-agent
formation flight problem, where agents must safely navigate
through a domain with multiple EZs.



Problem Setup: Consider a team of NA agents:

ẋi =
[
vi cosxi,3, vi sinxi,3, ωi

]T
(21)

where xi ∈ X ⊂ R3 and ui = [vi, ωi] ∈ U ⊂ R2. The
state defines 2D position and heading; inputs are bounded:
vi ∈ [0.8, 1.0], ωi ∈ [−10.0, 10.0]. Units are normalized
(LU/TU = 1). Agents must avoid NZ EZs:

xi ∈ S = {x : hj(x) ≥ 0, ∀j ∈ {1, . . . , NZ}}, (22)

where hj is defined in [18]. We omit its expression for brevity,
and as it is not critical to the algorithm. The leader’s tra-
jectory (pL, uL) is precomputed using a Dubins-based RRT*
method [19], generating a safe path in ∼13 seconds. Followers
track offset curves from the leader’s path, using a forward-
propagated controller to ensure feasibility. Inter-agent collision
constraints are not considered.

This problem is challenging since it includes (A) multiple
safety constraints, (B) tight input bounds, and (C) complicated
hj expressions that are difficult to handle analytically.

Applying gatekeeper: We define the backup set as the
leader’s trajectory:

C = {x ∈ X : ∃τ ∈ [t0, tf ] s.t. p
L(τ) = x}. (23)

This set is forward invariant under the backup controller:

πB(t, x) = uL(t− t′ + τ), ∀t ≥ t′, (24)

where at time t′ the robot joins the leaders path: x(t′) =
pL(τ). Thus, πB keeps the agent on C for all t ≥ t′. To
compute backup trajectories, we use Dubins shortest paths
(using [20], [21]) to a discrete set of points in C, rejecting
unsafe paths and selecting the shortest safe one. Candidate
trajectories are constructed by minimizing the cost in (18),
using the norm ∥x− xnom∥Q with Q = diag(1, 1, 0).

Figure 1 depicts committed trajectories. They follow the
nominal until nearing an EZ, then switch to tracking the
leader’s path. Since committed trajectories are updated, agents
can rejoin the nominal trajectory after passing an EZ.

Results: Figure 2 summarizes the results. We compare
gatekeeper against (A) Control Barrier Function Quadratic
Programs (CBF-QPs) and (B) nonlinear trajectory optimiza-
tion. The CBF-QP minimizes deviation from nominal input
while satisfying Lfhj(xi)+Lghj(xi)u ≥ −α(hj(xi)), for all
j subject to input bounds. This may become infeasible due
to multiple constraints or invalidity of hj as a CBF. When
infeasible, we re-solve a slacked version of the QP, minimizing
the norm of the slack. The nonlinear trajectory optimization
uses IPOPT [22], which replans every 0.2 TU for a 0.5 TU
horizon, initialized using the nominal trajectory.

Comparing Figures 2a, 2b, 2c, we can see closed-loop
trajectories of the agents as they navigate through the envi-
ronment. Only the gatekeeper method shows no safety
violations. For the CBF-QP method, the hj functions may not
be CBFs, especially under input constraints and the presence
of multiple constraints, and therefore can lead to violations.
The trajectory optimization method also has collisions, since
there is no guarantee that IPOPT will find a feasible solution
satisfying all the constraints.

Figures 2d, 2e, 2f compare the deviation of the trajectories
from the desired trajectories. Here, we see that the CBF-QP
method has large deviations, since the controller reduces the
v to try to meet safety constraints. Furthermore, notice that
the leader also deviates from the reference trajectory, even
though the leaders path is safe. This is because even though
the trajectory is safe, the trajectory approaches the boundary
too quickly for the CBF condition to be satisfied. Comparing
Figures 2e, 2f, notice that the deviations in gatekeeper and
the trajectory optimization methods are comparable, indicating
that gatekeeper has minimal sub-optimality.

Finally, we compare the computation load. The total com-
putation time required to generate the closed-loop trajectory
all three agents is as follows: CBF-QP: 9.49 s, trajectory
optimization: 302.65 s, gatekeeper: 3.61 s. Ergo, CBF-QP
and gatekeeper required only 3.1% and 1.2% of the
computational time of nonlinear trajectory optimization, but
only gatekeeper resulted in safe trajectories. Our proposed
approach is significantly computationally cheaper and has
strong guarantees of constraint satisfaction, despite multiple
state and input constraints.

IV. CONCLUSIONS
We have presented gatekeeper, a flexible safety frame-

work that guarantees safe execution in real-time planning
systems by committing to a safety-verified trajectory with a
known backup strategy. In particular, we quantify the subopti-
mality of the gatekeeper approach, a quantity that we can
compute in real-time.

We demonstrated gatekeeper on a challenging multi-
agent formation flight task with tight safety margins and
complex constraints. Compared to CBF-based control and
trajectory optimization, gatekeeper was the only method
to maintain safety throughout, while also being significantly
faster and only minimally suboptimal.

These results suggest gatekeeper is a promising direc-
tion for safety-critical robotics, especially when robustness and
computational efficiency are paramount. Future work includes
extending gatekeeper to handle inter-agent collision con-
straints in a distributed communication network.

REFERENCES

[1] E. E. Alves, D. Bhatt, B. Hall, K. Driscoll, A. Murugesan, and J. Rushby,
“Considerations in assuring safety of increasingly autonomous systems,”
Tech. Rep., 2018.

[2] D. R. Agrawal, R. Chen, and D. Panagou, “gatekeeper: Online safety
verification and control for nonlinear systems in dynamic environments,”
IEEE TRO, 2024.

[3] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[4] B. T. Lopez, J.-J. E. Slotine, and J. P. How, “Dynamic tube mpc for
nonlinear systems,” in IEEE ACC. IEEE, 2019, pp. 1655–1662.

[5] J. Yin, O. So, E. Y. Yu, C. Fan, and P. Tsiotras, “Safe beyond the horizon:
Efficient sampling-based mpc with neural control barrier functions,”
arXiv preprint arXiv:2502.15006, 2025.

[6] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
TAC, vol. 62, no. 8, pp. 3861–3876, 2016.

[7] K. Garg, J. Usevitch, J. Breeden, M. Black, D. Agrawal, H. Parwana,
and D. Panagou, “Advances in the theory of control barrier functions:
Addressing practical challenges in safe control synthesis for autonomous
and robotic systems,” Annual Reviews in Control, vol. 57, p. 100945,
2024.



Leader’s Desired Trajectory
Follower’s Desired Trajectory Follower’s Nominal Trajectory

Follower’s Backup Trajectory
Switch Point

Engagement Zone

Leader Robot

Follower Robot

t = 0.0 t = 0.6 t = 1.1 t = 1.8

Leader’s Executed Trajectory
Follower’s Executed Trajectory

�� �� ����

Fig. 1. Formation flight using gatekeeper. The leader follows an RRT* path (black dashed); followers track offset curves. The committed trajectory
(green) includes nominal (orange dashed) and backup (purple dashed) trajectories.

CBF-QP Trajectory Optimization gatekeeper

Engagement Zones

Leader Trajectory

(Safe) Follower Trajectory

(Unsafe) Follower Trajectory

Reference Trajectory

Leader

Follower 1

Follower 2

�� �� ��

�� �� ��

Fig. 2. Simulation Results. (a, b, c) depict the trajectories of the leader and the follower agents through the domain with 24 EZs using the different
planning methods. The leader’s trajectory is drawn in black, while the follower’s trajectories are drawn in green (when not in collision with a EZ), and
in red (when in collision). While CBF-QP and IPOPT have safety violations, gatekeeper does not. (d, e, f) show the deviation of the agents from
the desired trajectory, with Q = diag(1, 1, 0). While the deviation in IPOPT and gatekeeper are similar, the deviation is higher for the CBF-QP.

[8] M. H. Cohen, T. G. Molnar, and A. D. Ames, “Safety-critical control
for autonomous systems: Control barrier functions via reduced-order
models,” Annual Reviews in Control, vol. 57, p. 100947, 2024.

[9] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE TAC, vol. 50, no. 7, pp. 947–957, 2005.

[10] M. Ganai, S. Gao, and S. Herbert, “Hamilton-jacobi reachability in
reinforcement learning: A survey,” IEEE Open Journal of Control
Systems, 2024.

[11] J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and safe
trajectory planner for flights in unknown environments,” in IEEE/RSJ
IROS. IEEE, 2019, pp. 1934–1940.

[12] Y. Chen, M. Jankovic, M. Santillo, and A. D. Ames, “Backup control
barrier functions: Formulation and comparative study,” in 2021 60th
IEEE Conference on Decision and Control (CDC). IEEE, 2021, pp.
6835–6841.

[13] A. Singletary, A. Swann, I. D. J. Rodriguez, and A. D. Ames, “Safe
drone flight with time-varying backup controllers,” in IEEE/RSJ IROS.
IEEE, 2022, pp. 4577–4584.

[14] K. L. Hobbs, M. L. Mote, M. C. Abate, S. D. Coogan, and E. M. Feron,
“Runtime assurance for safety-critical systems: An introduction to safety
filtering approaches for complex control systems,” IEEE Control Systems
Magazine, vol. 43, no. 2, pp. 28–65, 2023.

[15] L. Jung, A. Estornell, and M. Everett, “Contingency constrained plan-
ning with mppi within mppi,” arXiv preprint arXiv:2412.09777, 2024.

[16] N. C. Janwani, E. Daş, T. Touma, S. X. Wei, T. G. Molnar, and
J. W. Burdick, “A learning-based framework for safe human-robot
collaboration with multiple backup control barrier functions,” in IEEE
ICRA. IEEE, 2024, pp. 11 676–11 682.

[17] D. Ko and W. K. Chung, “A backup control barrier function approach for
safety-critical control of mechanical systems under multiple constraints,”
IEEE/ASME Transactions on Mechatronics, 2024.

[18] T. Chapman, I. E. Weintraub, A. Von Moll, and E. Garcia, “Engagement
zones for a turn constrained pursuer,” arXiv preprint arXiv:2502.00364,
2025.

[19] A. Wolek, I. E. Weintraub, A. Von Moll, D. Casbeer, and S. G. Manyam,
“Sampling-based risk-aware path planning around dynamic engagement
zones,” IFAC-PapersOnLine, vol. 58, no. 28, pp. 594–599, 2024.

[20] A. M. Shkel and V. Lumelsky, “Classification of the dubins set,”
Robotics and Autonomous Systems, vol. 34, no. 4, pp. 179–202, 2001.

[21] K. Sundar, “Dubins.jl,” 2018. [Online]. Available: https://github.com/k
aarthiksundar/Dubins.jl

[22] J. L. Pulsipher, W. Zhang, T. J. Hongisto, and V. M. Zavala, “A unifying
modeling abstraction for infinite-dimensional optimization,” Computers
& Chemical Engineering, vol. 156, 2022.

https://github.com/kaarthiksundar/Dubins.jl
https://github.com/kaarthiksundar/Dubins.jl

	INTRODUCTION
	THEORY
	Preliminaries
	Problem Statement
	Constructing candidate trajectories
	Optimality of candidate trajectories
	Optimal backup trajectories
	The gatekeeper architecture

	APPLICATION
	CONCLUSIONS
	References

