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A B S T R A C T

This tutorial paper presents recent work of the authors that extends the theory of Control Barrier Functions
(CBFs) to address practical challenges in the synthesis of safe controllers for autonomous systems and robots.
We present novel CBFs and methods that handle safety constraints (i) with time and input constraints under
disturbances, (ii) with high-relative degree under disturbances and input constraints, and (iii) that are affected
by adversarial inputs and sampled-data effects. We then present novel CBFs and adaptation methods that
prevent loss of validity of the CBF, as well as methods to tune the parameters of the CBF online to reduce
conservatism in the system response. We also address the pointwise-only optimal character of CBF-induced
control inputs by introducing a CBF formulation that accounts for future trajectories, as well as implementation
challenges such as how to preserve safety when using output feedback control and zero-order-hold control.
Finally we consider how to synthesize non-smooth CBFs when discontinuous inputs and multiple constraints
are present.
. Introduction

Control Barrier Functions (CBFs) have been developed in recent
ears as a tool to verify and synthesize trajectories for nonlinear
onstrained control systems. Their principle is as follows: Given a
onstraint function, termed barrier function thereafter, whose zero
uper-level (or sub-level) sets define a constrained set, termed also
he safe set, the key idea is that one restricts the rate of change
f the barrier function along the system trajectories using a class 
unction of the barrier function (Ames et al., 2019; Ames, Xu, Grizzle,

Tabuada, 2017). If such a condition can be satisfied everywhere in
he constrained set under the given dynamics and control input con-
traints, then the barrier function is called a Control Barrier Function
CBF), and the constrained set is forward invariant. This method, in
onjunction with Control Lyapunov functions (CLFs) for stability, has
een employed to design safe controllers for several applications.

.1. Challenges

However, similarly to Lyapunov methods, some of the major chal-
enges of verifying safety and synthesizing safe controllers are that

∗ Corresponding author.
E-mail address: dpanagou@umich.edu (D. Panagou).

(1) finding a valid CBF for arbitrary system dynamics is not trivial,
(2) safety constraints of high relative degree compared to the system
dynamics, as well as input constraints make the problem even more
challenging, (3) modeling/parametric uncertainty dictates the formu-
lation of tools and techniques from robust control, adaptation and
learning in order to define valid CBFs that account for uncertainty.
Among other challenges, the fact that the control inputs derived due
to the CBF condition are only pointwise optimal (also often called
myopic control inputs), has given rise to considerations on under which
conditions one can guarantee optimality and feasibility of the resulting
control policies.

In the recent 3–4 years, the literature has seen an abundance of
papers with a variety of methodologies that aim to address some of the
aforementioned challenges. Finding valid CBFs for example has been
addressed with offline (Dawson, Gao, & Fan, 2023; Jagtap, Pappas, &
Zamani, 2020) and online methods, searching for either a valid function
ℎ over the constrained set, searching for some of the parameters of the
CBF condition (Lindemann et al., 2021; Robey et al., 2020), or adapting
for those parameters online in order to render the candidate function
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a valid CBF (Xiao, Belta, & Cassandras, 2021). High-relative degree
constraint functions have been first addressed in Nguyen and Sreenath
(2016), which considers the class of Exponential CBFs when the class-
functions used in CBF derivative condition are linear in their argument;
then (Xiao & Belta, 2019a) generalizes Exponential CBFs to generic
nonlinear class- functions in the form of Higher-Order CBFs (HOCBF);
these are further used in an event-triggered control formulation to
address systems with unknown dynamics (Xiao, Belta, & Cassandras,
2023). Time constraints and specifications (beyond state constraints)
and cooperative multi-agent systems have also been considered (Garg,
Arabi, & Panagou, 2022; Lindemann & Dimarogonas, 2020). In a rela-
tively less explored area, CBFs for noncooperative multi-agent systems
have also started being studied recently (Usevitch & Panagou, 2021).
Adaptive, robust, and learning-based formulations have also appeared
in order to deal with various sources of uncertainty (stochastic uncer-
tainty in the system dynamics, parametric uncertainty, deterministic
additive external disturbances), see for example Dhiman, Khojasteh,
Franceschetti, and Atanasov (2023), Jankovic (2018), Taylor and Ames
(2020).

1.2. Overview and organization

The scope of this tutorial paper is not to provide a thorough lit-
erature survey and review of recent CBF techniques, but rather to
focus on some of the authors’ own work on safety verification and
control, presented in roughly chronological and thematic order. More
specifically, Section 3 shows how time constraints can be encoded
as novel forms of timed CBFs, called Fixed-Time Barriers, how to con-
currently handle time, safety and input constraints using novel forms
of FxT-CLF-CBF-QPs, and how such concepts can be used to solve
problems ranging from spatiotemporal control to integrated planning
and control with safety and recursive feasibility guarantees. Section 4
presents our constructive methods for constraints with high-relative
degrees under disturbances and input constraints. We also introduce
Input-Constrained CBFs, which are generalizations of High-Order CBFs.
Then, Section 5 presents novel adaptation methods so that either the
control-input coefficient is tuned online to prevent loss of controllabil-
ity or the parameters of the CBF condition are tuned online in order to
reduce conservatism in the system response. Then, Section 6 addresses
the point-wise optimal character of CBF-induced control inputs by
accounting for future trajectories, in a computationally efficient way
that checks for possible future safety violations, and adjusts the control
action as needed. In Section 7 we address implementation challenges
such as how to preserve safety when using output feedback control
and zero-order hold control, while Section 8 covers the definition of
Adversarially-Robust CBFs for multi-robot control. Finally, we present
our approach on how to synthesize non-smooth CBFs when multiple
constraints are present in Section 9. Concluding, we note some of our
more recent and ongoing work in Section 10. Again, while we have
cited the relevant work of many of our fellow colleagues in the field, the
references list is vastly incomplete. It is out of the scope of this paper
to provide a thorough literature review. Interested readers are referred
to Ames et al. (2019), An et al. (2021) for recent comprehensive reviews
on various topics related to CBFs, as well as to the survey papers in this
special issue.

2. Preliminaries: Definition of control barrier functions, set in-
variance, and basic quadratic program for safe control

2.1. Notations

The set of real numbers is denoted as R and the non-negative real
numbers as R+. Given 𝑥 ∈ R, 𝑦 ∈ R𝑛𝑖 , and 𝑧 ∈ R𝑛𝑖×𝑚𝑖 , |𝑥| denotes the
absolute value of 𝑥 and ‖𝑦‖ denotes 𝐿2 norm of 𝑦. The interior and
boundary of a set  are denoted by Int() and 𝜕. The distance of a
point 𝑥 from a set  is denoted |𝑥| = min ‖𝑥 − 𝑦‖. For 𝑎 ∈ R+,
2

 𝑦∈
a continuous function 𝛼 ∶ [0, 𝑎) → [0,∞) is a class  function if it is
strictly increasing and 𝛼(0) = 0. A continuous function 𝛼 ∶ (−𝑏, 𝑎) →

(−∞,∞) for 𝑎, 𝑏 ∈ R+ is an extended class  function if it is strictly
increasing and 𝛼(0) = 0. Furthermore, if 𝑎 = ∞ and lim𝑟→∞ 𝛼(𝑟) =
∞, then it is called extended class-∞. The 𝑘th time derivative of a
function ℎ(𝑡, 𝑥) ∶ R+ × R𝑛 → R is denoted as ℎ(𝑘). For brevity, we will
refrain from mentioning explicit arguments whenever the context is
clear. For example, ℎ(𝑥) may simply be denoted as ℎ. The Lie derivative
of a function ℎ w.r.t a function 𝑓 is denoted as 𝐿𝑓ℎ = 𝜕ℎ

𝜕𝑥𝑓 .

2.2. Control barrier functions

Consider the nonlinear control-affine dynamical system:

̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, (1)

where 𝑥 ∈  ⊂ R𝑛 and 𝑢 ∈  ⊂ R𝑚 represent the state and control
input, and 𝑓 ∶  → R𝑛 and 𝑔 ∶  → R𝑚 are locally Lipschitz continuous
functions. The set (𝑡) of allowable states at time 𝑡 is specified as an
intersection of 𝑁 sets 𝑖(𝑡), 𝑖 ∈ {1, 2,… , 𝑁}, each of which is defined as
the zero-superlevel set1 of a (sufficiently smooth) function ℎ𝑖 ∶ R+× →

R as:

𝑖(𝑡) = {𝑥 ∈  ∣ ℎ𝑖(𝑡, 𝑥) ≥ 0}, (2a)

𝜕𝑖(𝑡) = {𝑥 ∈  ∣ ℎ𝑖(𝑡, 𝑥) = 0}, (2b)

Int(𝑖)(𝑡) = {𝑥 ∈  ∣ ℎ𝑖(𝑡, 𝑥) > 0}. (2c)

Definition 2.1 (Control Barrier Function Ames et al., 2017). For the
dynamical system (1), ℎ𝑖 ∶ R+ ×  → R is a control barrier function
(CBF) on the set 𝑖(𝑡) defined by (2a)–(2c) for 𝑡 ≥ 0 if there exists a
class- function 𝛼𝑖 ∶ R → R+ such that

sup
𝑢∈

[

𝜕ℎ𝑖(𝑡, 𝑥)
𝜕𝑡

+ 𝐿𝑓ℎ𝑖(𝑡, 𝑥) + 𝐿𝑔ℎ𝑖(𝑡, 𝑥)𝑢
]

≥ −𝛼𝑖(ℎ𝑖(𝑡, 𝑥))

∀𝑥 ∈ 𝑖,∀𝑡 > 0. (3)

Henceforth, we refer to (3) as the CBF derivative condition.

heorem 2.1 (Set Invariance Lindemann & Dimarogonas, 2018). Given
he dynamical system (1) and a set 𝑖(𝑡) defined by (2a)–(2c) for some
ontinuously differentiable function ℎ𝑖 ∶ R+ × R𝑛 → R, if ℎ𝑖 is a control
arrier function on the set 𝑖(𝑡), and there exists a 𝑢 ∶ R+ × R𝑛 → R𝑚,
iecewise continuous in 𝑡 Lipschitz continuous in 𝑥, that satisfies

𝜕ℎ𝑖(𝑡, 𝑥)
𝜕𝑡

+ 𝐿𝑓ℎ𝑖(𝑡, 𝑥) + 𝐿𝑔ℎ𝑖(𝑡, 𝑥)𝑢 ≥ −𝛼𝑖(ℎ𝑖(𝑡, 𝑥)), ∀𝑥 ∈ 𝑖(𝑡),∀𝑡 > 0, (4)

hen 𝑖(𝑡) is forward invariant.

If 𝐿𝑔ℎ𝑖(𝑡, 𝑥) ≡ 0 ∀(𝑡, 𝑥) ∈ R+ ×  , then the control input 𝑢 does
ot appear in the left-hand side of the CBF condition (4). Suppose the
elative degree of the function ℎ𝑖 w.r.t. the control input 𝑢 under the
ynamics (1) is equal to 𝑟𝑖 ≥ 2. We can then define 𝑟𝑖 functions as
ollows:

𝜓0
𝑖 (𝑡, 𝑥) = ℎ𝑖(𝑡, 𝑥), (5a)
𝑘
𝑖 (𝑡, 𝑥) = 𝜓̇𝑘−1𝑖 (𝑡, 𝑥) + 𝛼𝑘𝑖 (𝜓

𝑘−1
𝑖 (𝑡, 𝑥)), 𝑘 ∈ {1, 2,… , 𝑟𝑖 − 1}, (5b)

and denote their zero-superlevel sets respectively, as:

𝑖(𝑡) = {𝑥 ∣ 𝜓𝑘𝑖 (𝑡, 𝑥) ≥ 0, ∀𝑘 ∈ {0,… , 𝑟𝑖 − 1}}. (6)

1 Note that in certain sections of the current paper, as well as in many
eferences in the related literature, the constrained set 𝑖(𝑡) is defined as the

zero-sublevel set of a constraint function ℎ .
𝑖
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Definition 2.2 (Higher-Order CBF).2
(Tan, Cortez, & Dimarogonas, 2021) The function ℎ𝑖(𝑡, 𝑥) ∶ R+×R𝑛 → R
is a Higher-Order CBF (HOCBF) of 𝑟𝑖-th order on the set 𝒞𝑖(𝑡) if there
exist 𝑟𝑖 extended class- functions 𝛼𝑘𝑖 ∶ R → R, 𝑘 ∈ {1, 2,… , 𝑟𝑖}, and
n open set 𝒟𝑖(𝑡) ⊂ R+ × R𝑛 with 𝒞𝑖(𝑡) ⊂ 𝒟𝑖(𝑡) ⊂  such that

̇ 𝑟𝑖−1𝑖 (𝑡, 𝑥, 𝑢) ≥ −𝛼𝑟𝑖𝑖 (𝜓
𝑟𝑖−1
𝑖 (𝑡, 𝑥)), ∀𝑥 ∈ 𝒟𝑖(𝑡),∀𝑡 ≥ 0. (7)

Enforcing multiple constraints encoded via Control Lyapunov Func-
ions (Ames et al., 2017) and (in general, high-order) Control Barrier
unctions has commonly been addressed via the following class of
ontrollers:
CLF-(HO)CBF-QP)

𝑢, 𝛿) = arg min
𝑢∈ ,𝛿≥0

‖𝑢 − 𝑢𝑟(𝑡, 𝑥)‖ +𝑀𝛿2 (8a)

s.t. 𝑉̇ (𝑡, 𝑥, 𝑢) ≤ −𝑘𝑉 (𝑡, 𝑥) + 𝛿, (8b)

𝜓̇𝑟𝑖−1𝑖 (𝑡, 𝑥, 𝑢) ≥ −𝛼𝑟𝑖𝑖 (𝜓
𝑟𝑖−1
𝑖 (𝑡, 𝑥)), (8c)
𝑖 ∈ {1, 2,… , 𝑁}

where 𝑢𝑟 ∶ R+ × R𝑛 → R𝑚 is the reference control input, often
esigned without any regard to constraints, 𝑀 ∈ R+ is positive definite
eighting matrix, 𝑉 (𝑡, 𝑥) a control Lyapunov function (CLF) encoding

onvergence objectives for the system trajectories, 𝑘 ∈ R+ is the
xponential rate of convergence, and 𝛿 ∈ R+ is a slack variable used to

relax the CLF constraint (8b). The optimization (8) is a QP when the
dynamics is control-affine as in (1) and  can be expressed in the form
f a polytope 𝐴𝑢 ≤ 𝑏, 𝐴 ∈ R𝑞×𝑚, 𝑏 ∈ R𝑞×1, 𝑞 > 0.

. Fixed-time control barrier functions: Synthesis under time, in-
ut and safety constraints

In this section, we present a method to address temporal constraints
e.g., convergence to a goal region within a given time horizon) in
ddition to safety constraints (realized via CBFs) for nonlinear systems
ith bounded inputs. The main references for this section are Garg

2021), Garg, Arabi, and Panagou (2022), Garg and Panagou (2019,
021a, 2021b).

.1. Fixed-time Stability (FxTS) under input constraints

To encode time constraints, we utilize a relatively newer notion of
tability, termed fixed-time stability (FxTS) (Polyakov, 2012), which
equires that the system trajectories converge to the equilibrium within
given fixed time 𝑇 < ∞. The following definition of FxTS and the

orresponding Lyapunov conditions are adapted from Polyakov (2012).
onsider the autonomous dynamical system:

̇ (𝑡) = 𝑓 (𝑥(𝑡)), (9)

here 𝑥 ∈ R𝑛, 𝑓 ∶  → R𝑛 is continuous on an open neighborhood
⊆ R𝑛 of the origin and 𝑓 (0) = 0.

efinition 3.1 (FxTS). The origin is an FxTS equilibrium of (9) if it is
yapunov stable and there exists a fixed time 𝑇 such that lim𝑡→𝑇 𝑥(𝑡) = 0

for all 𝑥(0) ∈ R𝑛, i.e., the trajectories converge to the origin within a
fixed time 𝑇 .

The authors of Polyakov (2012) also presented Lyapunov conditions
for the equilibrium of the unconstrained system (9) to be FxTS.

2 Definitions 2.1 and 2.2 were presented in their original papers for the
ime-invariant safe sets 𝑖. We note that an extension to the time-varying
ase can be proven with Nagumo’s theorem applied to non-autonomous
ystems (Carja, Necula, & Vrabie, 2007, Theorem 3.5.2) and hence we directly
resent that. This follows also the notation in Lindemann and Dimarogonas
3

2018).
Theorem 3.1 (FxTS Conditions for Unconstrained Systems). Suppose there
exists a continuously differentiable, positive definite, radially unbounded
function 𝑉 ∶ R𝑛 → R such that

𝑉̇ (𝑥) ≤ −𝛼1𝑉 (𝑥)𝛾1 − 𝛼2𝑉 (𝑥)𝛾2 , (10)

holds for all 𝑥 ∈ R𝑛 ⧵ {0}, with 𝛼1, 𝛼2 > 0, 𝛾1 > 1 and 0 < 𝛾2 < 1. Then, the
origin of (9) is FxTS with continuous settling-time function 𝑇 that satisfies:

𝑇 ≤ 1
𝛼1(𝛾1 − 1)

+ 1
𝛼2(1 − 𝛾2)

. (11)

As illustrated in Garg, Arabi, and Panagou (2022), this Lyapunov
result cannot be used for systems with input constraints. The modified
Lyapunov conditions were given in Garg and Panagou (2021a) and
Garg, Arabi, and Panagou (2022) for FxTS under input constraints.

Theorem 3.2 (New Lyapunov conditions for FxTS). Let 𝑉 ∶ R𝑛 → R be
a continuously differentiable, positive definite, radially unbounded function,
satisfying

𝑉̇ (𝑥) ≤ −𝛼1𝑉 (𝑥)𝛾1 − 𝛼2𝑉 (𝑥)𝛾2 + 𝛿1𝑉 (𝑥), (12)

for all 𝑥 ∈ R𝑛 ⧵ {0} along the trajectories of (9) with 𝛼1, 𝛼2 > 0, 𝛿1 ∈ R,
1 = 1+ 1

𝜇 , 𝛾2 = 1− 1
𝜇 and 𝜇 > 1. Then, there exists a neighborhood 𝐷 ⊆ R𝑛

f the origin such that for all 𝑥(0) ∈ 𝐷, the closed-trajectories of (9) reach
he origin within a fixed time 𝑇 , where

=

⎧

⎪

⎨

⎪

⎩

R𝑛; 𝛿1
2
√

𝛼1𝛼2
< 1,

{

𝑥 ∣ 𝑉 (𝑥) ≤ 𝑘𝜇
(

𝛿1−
√

𝛿21−4𝛼1𝛼2
2𝛼1

)𝜇}

; 𝛿1
2
√

𝛼1𝛼2
≥ 1

, (13)

𝑇 ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇𝜋
2
√

𝛼1𝛼2
; 𝛿1

2
√

𝛼1𝛼2
≤ 0,

𝜇
𝛼1𝑘1

(

𝜋
2 − tan−1 𝑘2

)

; 0 ≤ 𝛿1
2
√

𝛼1𝛼2
< 1,

𝜇
𝛼1(𝑏−𝑎)

(

log
(

𝑏−𝑘𝑎
𝑎(1−𝑘)

)

− log
(

𝑏
𝑎

))

; 𝛿1
2
√

𝛼1𝛼2
≥ 1

, (14)

where 0 < 𝑘 < 1, 𝑎 < 𝑏 are the solutions of 𝛾(𝑧) ∶= 𝛼1𝑧2 − 𝛿1𝑧 + 𝛼2 = 0,

𝑘1 =

√

4𝛼1𝛼2−𝛿21
4𝛼21

and 𝑘2 = − 𝛿1
√

4𝛼1𝛼2−𝛿21
.

For a constrained control system, a relation between the domain of
attraction, the time of convergence, and the input bounds using the new
Lyapunov conditions (12) was developed in Garg, Arabi, and Panagou
(2022). In brief, it was shown that the domain of attraction grows as
the bounds on the input increases, or the required time of convergence
increases, which also matches the basic intuition. Interested readers on
the proof of this theorem and a more detailed discussion on this topic
are referred to Garg (2021). Next, we illustrate how this modified Lya-
punov condition naturally fits in a QP formulation for the concurrent
problem of FxTS and safety, in the presence of input constraints.

3.2. Concurrent FxTS and safety

Consider the nonlinear, control-affine system

̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, 𝑥(0) = 𝑥0, (15)

where 𝑥 ∈ R𝑛 is the state vector, 𝑓 ∶ R𝑛 → R𝑛 and 𝑔 ∶ R𝑛 → R𝑛×𝑚 are
system vector fields, continuous in their arguments, and 𝑢 ∈  ⊂ R𝑚
is the control input vector where  is the input constraint set. Let
ℎ𝑆 ∶ R𝑛 → R and ℎ𝐺 ∶ R𝑛 → R be continuously differentiable
functions. Define the safe set 𝑆𝑆 ∶= {𝑥 ∣ ℎ𝑆 (𝑥) ≤ 0} such that its
boundary and its interior 𝑆𝑆 are given as 𝜕𝑆𝑆 ∶= {𝑥 ∣ ℎ𝑆 (𝑥) = 0}
and int(𝑆𝑆 ) ∶= {𝑥 ∣ ℎ𝑆 (𝑥) < 0}, respectively, to be rendered forward
invariant under the closed-loop dynamics of (15). Similarly, define the
goal set 𝑆𝐺 ∶= {𝑥 ∣ ℎ𝐺(𝑥) ≤ 0} such that its boundary and its interior
𝑆𝐺 are given as 𝜕𝑆𝐺 ∶= {𝑥 ∣ ℎ𝐺(𝑥) = 0} and int(𝑆𝐺) ∶= {𝑥 ∣ ℎ𝐺(𝑥) < 0},
respectively, to be reached by the closed-loop trajectories of (15) in a
user-defined fixed time 𝑇 > 0.
𝑢𝑑
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Fig. 1. Illustration of the safe set 𝑆𝑆 (shown in green), the goal set 𝑆𝐺 (shown in light
blue), FxT DoA 𝐷 (shown in dark blue) and the domain 𝐷𝑆 (shown in brown). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Assumption 3.1. 𝑆𝐺
⋂

𝑆𝑆 ≠ ∅, the set 𝑆𝐺 is compact, and the sets
𝑆𝑆 and 𝑆𝐺 have non-empty interiors. There exists a class-∞ function
𝛼𝐺 such that ℎ𝐺(𝑥) ≥ 𝛼𝐺(|𝑥|𝑆𝐺 ), for all 𝑥 ∉ 𝑆𝐺.

The QP formulation in Garg and Panagou (2019) uses the old FxTS
Lyapunov conditions from Theorem 3.1 along with the CBF condition
from Definition 2.1 for concurrent safety and FxTS. However, that
formulation is incapable of handling input constraints. The formulation
in Garg, Arabi, and Panagou (2022) uses the new FxTS Lyapunov con-
ditions from Theorem 3.2, allowing incorporation of input constraints
in the QP. The function ℎ𝐺 is termed as FxT-CLF if it satisfies the new
FxTS Lyapunov conditions in Theorem 3.2, while the function ℎ𝑆 is
termed as a CBF if it satisfies the conditions in Definition 2.1. Next, we
define the notion of the fixed-time domain of attraction for a compact
set 𝑆 ⊂ R𝑛:

Definition 3.2 (FxT-DoA). For a compact set 𝑆𝐺 ⊂ R𝑛, the set 𝐷𝑆 ⊂ R𝑛,
satisfying 𝑆𝐺 ⊂ 𝐷𝑆 , is a Fixed-Time Domain of Attraction (FxT-DoA)
with time 𝑇 > 0 for the closed-loop system (15) under 𝑢, if

(i) for all 𝑥(0) ∈ 𝐷𝑆 , 𝑥(𝑡) ∈ 𝐷𝑆 for all 𝑡 ∈ [0, 𝑇 ], and
(ii) there exists 𝑇0 ∈ [0, 𝑇 ] such that lim𝑡→𝑇0 𝑥(𝑡) ∈ 𝑆𝐺.

Problem 3.1. Design a control input 𝑢 ∈  ∶= {𝑣 ∈ R𝑚 ∣ 𝐴𝑢𝑣 ≤ 𝑏𝑢}
and compute 𝐷 ⊂ R𝑛, so that for all 𝑥0 ∈ 𝐷 ⊆ 𝑆𝑆 , the closed-loop
trajectories 𝑥(𝑡) of (15) satisfy 𝑥(𝑡) ∈ 𝑆𝑆 for all 𝑡 ≥ 0, and 𝑥(𝑇𝑢𝑑 ) ∈ 𝑆𝐺,
where 𝑇𝑢𝑑 > 0 is a user-defined fixed time and 𝐷 is a FxT-DoA for the
set 𝑆𝐺.3

In Garg, Arabi, and Panagou (2022), a QP-based feedback syn-
thesis approach is presented to address Problem 3.1. Define 𝑧 =
[

𝑣𝑇 𝛿1 𝛿2
]𝑇 ∈ R𝑚+2, and consider the QP:

(FxT-CLF-CBF-QP)

min
𝑧∈R𝑚+2

1
2
𝑧𝑇𝐻𝑧 + 𝐹 𝑇 𝑧 (16a)

s.t. 𝐴𝑢𝑣 ≤ 𝑏𝑢, (16b)
𝐿𝑓ℎ𝐺(𝑥) + 𝐿𝑔ℎ𝐺(𝑥)𝑣 ≤ 𝛿1ℎ𝐺(𝑥) − 𝛼1 max{0, ℎ𝐺(𝑥)}𝛾1

− 𝛼2 max{0, ℎ𝐺(𝑥)}𝛾2 (16c)

𝐿𝑓ℎ𝑆 (𝑥) + 𝐿𝑔ℎ𝑆 (𝑥)𝑣 ≤ − 𝛿2ℎ𝑆 (𝑥), (16d)

where 𝐻 = diag{𝑤𝑢1 ,… , 𝑤𝑢𝑚 , 𝑤1, 𝑤2} is a diagonal matrix consisting
of positive weights 𝑤𝑢𝑖 , 𝑤𝑖 > 0, 𝐹 =

[

𝟎𝑇𝑚 𝑞1 0
]𝑇 with 𝑞1 > 0

and 𝟎𝑚 ∈ R𝑚 a column vector consisting of zeros. The parameters
𝛼1, 𝛼2, 𝛾1, 𝛾2 are chosen as 𝛼1 = 𝛼2 =

𝜇𝜋
2𝑇𝑢𝑑

, 𝛾1 = 1+ 1
𝜇 and 𝛾2 = 1− 1

𝜇 with

3 Note that this problem can also be formulated using Signal Temporal
Logic (Lindemann & Dimarogonas, 2018), as stated in Garg and Panagou
(2019).
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Fig. 2. The resulting closed-loop paths of the agents.

𝜇 > 1. The linear term 𝐹 𝑇 𝑧 = 𝑞1𝛿1 in the objective function of (16)
penalizes the positive values of 𝛿1. Constraint (16b) imposes control
input constraints. Constraint (16c) is imposed for convergence of the
closed-loop trajectories of (15) to the set 𝑆𝐺, and the constraint (16d)
is imposed for forward invariance of the set 𝑆𝑆 . The slack terms
corresponding to 𝛿1, 𝛿2 allow the upper bounds of the time derivatives
of ℎ𝑆 (𝑥) and ℎ𝐺(𝑥), respectively, to have a positive term for 𝑥 such that
ℎ𝑆 (𝑥) < 0 and ℎ𝐺(𝑥) > 0. With this setup and under certain conditions,
it was shown in Garg, Arabi, and Panagou (2022) that the QP (16)
is feasible (ensuring a control input exists), has a continuous solution
(ensuring applicability of Nagumo’s theorem for forward invariance)
and guarantees both safety and FxTS from a domain that depends on
the maximum value of the slack variable 𝛿1. For simultaneous safety
and FxT convergence, a subset 𝐷𝑆 ⊂ 𝑆𝑆 of the FxT-DoA 𝐷 of the set
𝑆𝐺 can be defined so that its forward invariance per Lyapunov theorem
results in safety and it being a subset of the FxT-DoA results in FxT
convergence (see Fig. 1) .

We present a two-agent motion planning example under spatiotem-
poral specifications, where the robot dynamics are modeled under
constrained unicycle dynamics as 𝑥̇𝑖 = 𝑢𝑖 cos(𝜃𝑖), 𝑦̇𝑖 = 𝑢𝑖 sin(𝜃𝑖), 𝜃̇𝑖 =
𝜔𝑖, where [𝑥𝑖 𝑦𝑖]𝑇 ∈ R2 is the position vector of the agent 𝑖 for
𝑖 ∈ {1, 2}, 𝜃𝑖 ∈ R its orientation and [𝑢𝑖 𝜔𝑖]𝑇 ∈ R2 the control
input vector comprising of the linear speed 𝑢𝑖 ∈ [0, 𝑢𝑀 ] and angular
velocity |𝜔𝑖| ≤ 𝜔𝑀 . The closed-loop trajectories for the agents, starting
from [𝑥1(0) 𝑦1(0)]𝑇 ∈ 𝐶1 = {𝑧 ∈ R2 ∣ ‖𝑧 − [−1.5 1.5]𝑇 ‖∞ ≤ 0.5}
and [𝑥2(0) 𝑦2(0)]𝑇 ∈ 𝐶2 = {𝑧 ∈ R2 ∣ ‖𝑧 − [1.5 1.5]𝑇 ‖∞ ≤ 0.5},
respectively, are required to reach to sets 𝐶2 and 𝐶1, while staying
inside the blue rectangle {𝑧 ∈ R2 ∣ ‖𝑧‖∞ ≤ 2}, and outside the red-
dotted circle {𝑧 ∈ R2 ∣ ‖𝑧‖2 ≤ 1.5}, as shown in Fig. 2. The agents are
also maintaining an inter-agent distance 𝑑𝑚 > 0 at all times.

3.3. Robust FxTS and robust safety

Next, we discuss how robustness to unmodeled phenomenal and
measurement noise can be considered during control design. For this,
consider a perturbed dynamical system:

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢 + 𝑑(𝑡, 𝑥), (17)

where 𝑥 ∈ R𝑛, 𝑢 ∈  ⊂ R𝑚 are the state and the control input vectors,
respectively, with  the control input constraint set, 𝑓 ∶ R𝑛 → R𝑛 and
𝑔 ∶ R𝑛 → R𝑛×𝑚 are continuous functions and 𝑑 ∶ R+ × R𝑛 → R𝑛 is an
unknown additive disturbance. The following assumption is made.

Assumption 3.2 (Disturbance bound). There exists 𝛾 > 0 such that for
all 𝑡 ≥ 0 and 𝑥 ∈  ⊂ R𝑛, ‖𝑑(𝑡, 𝑥)‖ ≤ 𝛾, where  is a compact domain.

Encoding safety in the presence of disturbances can be done using
robust CBFs (Black, Garg, & Panagou, 2020; Cortez, Oetomo, Manzie,
& Choong, 2021a; Jankovic, 2018). In these works, however, only
added process noise, or uncertainty in the state dynamics as in (17),
is considered, and robust variants of FxT-CLF and CBF are introduced
to guarantee convergence to a neighborhood of the goal set and safety.
Here we take into account the effect of sensor noise and measurement
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𝑥

uncertainties. More specifically, consider that only an estimate of the
system state denoted as 𝑥̂, is available, that satisfies:

̇̂ = 𝑓 (𝑥̂) + 𝑔(𝑥̂)𝑢. (18)

The following assumption is made on the state-estimation error ‖𝑥− 𝑥̂‖.

Assumption 3.3 (Estimation error bound). There exists an 𝜖 > 0 such
that ‖𝑥̂(𝑡) − 𝑥(𝑡)‖ ≤ 𝜖, for all 𝑡 ≥ 0.

Then a robust variant of FxT-CLF and a robust variant of CBF are
proposed in Garg and Panagou (2021b) as follows: Corresponding to
the set 𝑆(𝑡) = {𝑥 ∣ ℎ(𝑡, 𝑥) ≤ 0} where ℎ ∶ R+ × R𝑛 → R is continuously
differentiable, define 𝑆̂𝜖(𝑡) = {𝑥̂ ∣ ℎ(𝑡, 𝑥̂) ≤ −𝑙𝜖}, where 𝑙 = sup ‖ 𝜕ℎ(𝑡,𝑥)𝜕𝑥 ‖

is the Lipschitz constant of the function ℎ. Inspired from Xu, Tabuada,
Grizzle, and Ames (2015), the notion of a robust CBF is defined as
follows.

Definition 3.3 (Robust CBF). A continuously differentiable function ℎ ∶
R+×R𝑛 → R is called a robust CBF for (17) with respect to a disturbance
𝑑 satisfying Assumption 3.2 if there exists a locally Lipschitz class-
function 𝛼 such that the following condition holds

inf
𝑢∈

{

𝐿𝑓ℎ(𝑡, 𝑥(𝑡)) + 𝐿𝑔ℎ(𝑡, 𝑥(𝑡))𝑢 +
𝜕ℎ
𝜕𝑡

(𝑡, 𝑥(𝑡))
}

≤ 𝛼(−ℎ(𝑡, 𝑥(𝑡))) − 𝑙𝛾,

(19)

for all 𝑥(𝑡) ∈ 𝑆(𝑡) and 𝑡 ≥ 0.

Note that the worst-case bound 𝑙𝛾 of the term ‖𝐿𝑑ℎ(𝑡, 𝑥)‖ can be re-
laxed if more information than just the upper bound of the disturbance
is known, or can be adapted online to reduce the conservatism. Some
relevant work has been presented in Black, Arabi, and Panagou (2021),
Black et al. (2020) and Black and Panagou (2023a). The existence of
a robust CBF implies forward invariance of the set 𝑆(𝑡) for all 𝑡 ≥ 0,
assuming that the system trajectories start with an initial 𝑥(0) such that
the measured or estimated state satisfies 𝑥̂(0) ∈ 𝑆̂𝜖(0).

Similarly, we can define the notion of a robust FxT-CLF to guarantee
FxTS of the closed-loop trajectories to the goal set. Consider a con-
tinuously differentiable function 𝑉 ∶ R𝑛 → R with Lipschitz constant
𝑙𝑉 .

Definition 3.4 (Robust FxT-CLF-𝑆). A continuously differentiable func-
tion 𝑉 ∶ R𝑛 → R is called a Robust FxT-CLF-𝑆 for a set 𝑆 with respect to
a disturbance 𝑑 satisfying Assumption 3.2 if 𝑉 is positive definite and
radially unbounded with respect to the set 𝑆, 𝑉 (𝑥) < 0 for 𝑥 ∈ int(𝑆),
and satisfies

inf
𝑢∈

{𝐿𝑓𝑉 (𝑥) + 𝐿𝑔𝑉 (𝑥)𝑢} ≤ −𝛼1𝑉 (𝑥)𝛾1 − 𝛼2𝑉 (𝑥)𝛾2 + 𝛿1𝑉 (𝑥) − 𝑙𝑉 𝛾, (20)

with 𝛼1, 𝛼2 > 0, 𝛿1 ∈ R, 𝛾1 = 1 + 1
𝜇 , 𝛾2 = 1 − 1

𝜇 for 𝜇 > 1, along the
trajectories of (17).

Using the mean value theorem, the following inequality can be
obtained:

𝑉 (𝑥) ≤ 𝑉 (𝑥̂) + 𝑙𝑉 𝜖, (21)

which implies that if 𝑉 (𝑥̂) ≤ −𝑙𝑉 𝜖, then 𝑉 (𝑥) ≤ 0. Based on this, it is
shown in Garg and Panagou (2021b) that existence of a robust FxT-
CLF for the set 𝑆𝐺 implies existence of neighborhood 𝐷 of the set 𝑆𝐺
such that fixed time convergence of the closed-loop trajectories of 𝑥 is
guaranteed for all initial conditions 𝑥(0) such that the estimated state
satisfies 𝑥̂(0) ∈ 𝐷.

Note that to encode safety with respect to a general time-varying
safe set, let ℎ𝑇 ∶ R+ ×R𝑛 → R be a continuously differentiable function
defining the time-varying safe set 𝑆𝑇 (𝑡) = {𝑥 ∣ ℎ𝑇 (𝑡, 𝑥) ≤ 0}. Now we
are ready to present the QP formulation for a robust control synthesis
under input constraints. For the sake of brevity, we omit the arguments
̂ and (𝑡, 𝑥̂). Define 𝑧 =

[

𝑣𝑇 𝛿1 𝛿2 𝛿3
]𝑇 ∈ R𝑚+3, and consider the

following optimization problem:
5

Fig. 3. Closed-loop paths traced by agents in a 4 agents scenario for the nominal
case, i.e., without any disturbance (solid lines), with only state estimation error (SEE)
(dashed lines) and with both SEE and additive disturbance (AD) (dotted lines).

(Robust FxT-CLF-CBF QP)

min
𝑧∈R𝑚+3

1
2
𝑧𝑇𝐻𝑧 + 𝐹 𝑇 𝑧 (22a)

s.t. 𝐴𝑢𝑣 ≤ 𝑏𝑢, (22b)
𝐿𝑓 ℎ̂𝐺 + 𝐿𝑔 ℎ̂𝐺𝑣 ≤ 𝛿1ℎ̂𝐺 − 𝛼1 max{0, ℎ̂𝐺}𝛾1

− 𝛼2 max{0, ℎ̂𝐺}𝛾2 − 𝑙𝐺𝛾 (22c)

𝐿𝑓 ℎ̂𝑆 + 𝐿𝑔 ℎ̂𝑆𝑣 ≤ − 𝛿2ℎ̂𝑆 − 𝑙𝑆𝛾, (22d)

𝐿𝑓 ℎ̂𝑇 + 𝐿𝑔 ℎ̂𝑇 𝑣 ≤ − 𝛿3ℎ̂𝑇 −
𝜕ℎ̂𝑇
𝜕𝑡

− 𝑙𝑇 𝛾, (22e)

where 𝐻 = diag{{𝑤𝑢𝑙}, 𝑤1, 𝑤2, 𝑤3} is a diagonal matrix consisting
of positive weights 𝑤𝑢𝑙 , 𝑤1, 𝑤2, 𝑤3 > 0 for 𝑙 = 1, 2,… , 𝑚, 𝐹 =
[

𝟎𝑇𝑚 𝑞 0 0
]𝑇 with 𝑞 > 0 and functions ℎ̂𝐺 , ℎ̂𝑆 (respectively, ℎ̂𝑇 ) are

functions of 𝑥̂ (respectively, (𝑡, 𝑥̂)) defined as follows. For any function
𝜙 ∶ R+ × R𝑛 → R with Lipschitz constant 𝑙𝜙, define

𝜙̂(𝑡, ⋅) = 𝜙(𝑡, ⋅) + 𝑙𝜙𝜖. (23)

The parameters 𝛼1, 𝛼2, 𝛾1, 𝛾2 are chosen as 𝛼1 = 𝛼2 = 𝜇𝜋∕(2𝑇̄ ), 𝛾1 =
1 + 1

𝜇 and 𝛾2 = 1 − 1
𝜇 with 𝜇 > 1 and 𝑇̄ the user-defined time in

Problem 3.1. With this robust control design framework, under some
technical assumptions and conditions, it is shown in Garg and Panagou
(2021b) that the QP (22) is feasible, its solution is continuous and
results in both safety of 𝑆𝑆 and FxTS of 𝑆𝐺, from the domain of
attraction that depends on the maximum value of the slack variable
𝛿1.

In the interest of space, we are not including a detailed case study
here, however interested readers are referred to Garg and Panagou
(2021b), which includes the problem of navigating multiple nonlinear
underactuated marine vehicles while respecting visual sensing con-
straints, avoiding collisions (encoding safety constraints), and moving
towards desired destinations (encoding convergence constraints) under
additive disturbances (currents) and navigation (state estimation) error.
The closed-loop paths of four vehicles are shown in Fig. 3.

3.4. Extensions and relevant work

One of the limitations of CLF-CBF QPs for convergence and safety, as
analyzed in Reis, Aguiar, and Tabuada (2020), is the existence of stable
undesirable equilibrium. Furthermore, while CBF-based approaches can
guarantee step-wise safety (i.e., safety at each step) and hence are
termed myopic in nature (Cohen & Belta, 2020), they cannot guarantee
that system trajectories will not enter a region in the future from
where safety cannot be guaranteed. Without proper knowledge of the
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Fig. 4. Case study demonstrating the proposed method. (Left) The trajectory 𝑥(𝑡) projected onto 𝑝− 𝜃− 𝑡 axes. In each interval [𝑖𝑇 , (𝑖+1)𝑇 ), FxT-DoA 𝑖 is depicted as the colored
region which decays to the set of feasibility of MPC (𝑖) by the end of the interval. (Middle) Projection of the closed-loop trajectory on the 𝑝− 𝜃 plane. The trajectory leaves and
enters the set 𝑇 after 𝑡 = 2𝑇 and before 𝑡 = 3𝑇 , respectively. (Right) Illustration of a scenario where the trajectory 𝑥̄(𝑡) generated using an exponentially stabilizing CLF fails to
enter  , leading to infeasibility of the MPC at 𝑡 = 1𝑇 , whereas the trajectory 𝑥(𝑡) generated by the proposed method enters the set before 𝑡 = 1𝑇 .
1

𝑥

control invariant set, a wrongly chosen barrier function might lead to
the infeasibility of the CBF-QP and as a result, violation of safety. To
circumvent these issues, combining a high-level planner with a low-
level controller has become a popular approach (Herbert et al., 2017;
Rosolia & Ames, 2021; Singh, Majumdar, Slotine, & Pavone, 2017;
Smith, Yin, & Arcak, 2019; Yin, Bujarbaruah, Arcak, & Packard, 2020).
The underlying idea in these strategies is to design low-level controllers
to track a reference trajectory, which is computed by a high-level plan-
ner using a simplified model. However, the low-level controller must
be able to track the trajectory generated by the high-level in a given
time dictated by the update frequency of the high-level planner. To this
end, the notion of FxTS is utilized in Garg, Cosner, Rosolia, Ames, and
Panagou (2021), where an FxT-CLF-CBF-QP-based low-level controller
guarantees that the trajectories remain in the domain of attraction of
the next waypoint, and reach there before the next high-level-planning
update occurs. In turn, a model predictive control (MPC)-based high-
level planner utilizes the FxT-DoA to generate trajectories so that the
low-level QP is guaranteed to remain feasible. This way, the low-level
controller helps guarantee the recursive feasibility of the MPC, and the
high-level planner helps guarantee the feasibility of the QP, thereby
guaranteeing that the underlying problem can be solved. In Garg et al.
(2021), we also introduced a new notion of safety, termed Periodic
Safety, where the system trajectories are required to enter or visit a
set (say, 𝑇 ) periodically (say, with period 𝑇 > 0) while remaining in
a safe set  at all times.

In the interest of space, we skip the technical details of the hier-
archical framework and briefly discuss the case study that illustrates
the utility of such an approach. We use the proposed strategy to steer
a Segway to the origin.4 The state of the system is the position 𝑝, the
velocity 𝑣, the rod angle 𝜃, and the angular velocity 𝜔. The control
action is the voltage commanded to the motor and the equations of
motion used to simulate the system can be found in Gurriet, Single-
tary, Reher, Ciarletta, Feron, and Ames (2018, Section IV.B). In this
simulation, we run the high-level MPC planner at 5 Hz and the low-
level controller at 10kHz. We choose the set 𝑇 = {𝑥 = [𝑝, 𝑣, 𝜃, 𝜔]𝑇 ∣
|𝑝| ≤ 10, |𝑣| ≤ 5, |𝜃| ≤ 0.3, |𝜔| ≤ 10𝜋},𝐹 = {0}, input bounds ‖𝑢‖ ≤ 25
with ‖𝑢𝑚‖ ≤ 15. From Fig. 4, the main takeaway is that periodically,
using the proposed FxT-CLF-QP, the closed-loop trajectories reach the
set from where the feasibility of MPC is guaranteed (denoted 𝑖 for
𝑖−th MPC step). However, an exponentially stabilizing controller fails
to do so, resulting in the infeasibility of the MPC. This demonstrates
the efficacy of the proposed framework over the existing methods that
use exponentially stabilizing controllers.

4 Code available at \texttt{github.com/kunalgarg42/fxts_multi_rate}
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4. Input-constrained control barrier functions: Synthesis under
high relative degree and disturbances

4.1. Constructive methods for higher-order CBFs under disturbances and
input constraints

High-order CBFs (HOCBFs) were first introduced in Xiao and Belta
(2019b) and extended to be robust in Tan et al. (2021) and Xiao and
Belta (2021). However, a limitation of all these works is that it is
unclear how to choose the class- functions in the HOCBF construc-
tion. When there are no input constraints, choosing these functions is
equivalent to tuning the control law. When there are input constraints,
these functions determine the size and shape of the CBF set, and thus
must be chosen carefully to ensure satisfaction of (3), here modified
in Definition 4.1 to include robustness. Thus, the objective of Breeden
and Panagou (2021, 2023c) is to develop constructive methods to
choose these functions. This section presents one such method from
our work in Breeden and Panagou (2023c), and the interested reader
is referred to Breeden and Panagou (2023c, Sec. 3) for two additional
methods. Related works also include, non-exhaustively, (Gurriet et al.,
2018; Shaw Cortez, Tan, & Dimarogonas, 2022; Squires, Pierpaoli,
& Egerstedt, 2018; Wenceslao & Dimarogonas, 2022; Wiltz, Tan, &
Dimarogonas, 2023) and learning-based methods (Jin, Wang, Yang,
& Mou, 2020; Robey et al., 2020; Robey, Lindemann, Tu, & Matni,
2021; Wang, Meng, Li, Smith, & Liu, 2021; Wei & Liu, 2022), and the
following method is further extended to high-order robust sampled-data
CBFs in Breeden and Panagou (2023a).

Consider the time-varying control-affine model

̇ = 𝑓 (𝑡, 𝑥) + 𝑔(𝑡, 𝑥)(𝑢 +𝑤𝑢) +𝑤𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐹 (𝑡,𝑥,𝑢,𝑤𝑢 ,𝑤𝑥)

, (24)

with time 𝑡 ∈  = [𝑡0,∞), state 𝑥 ∈ R𝑛, control input 𝑢 ∈  ⊂ R𝑚 where
 is compact, unknown disturbances 𝑤𝑢 ∈ R𝑚 and 𝑤𝑥 ∈ R𝑛 that are
continuous in time, and functions 𝑓 ∶  × R𝑛 → R𝑛 and 𝑔 ∶  × R𝑛 →

R𝑛×𝑚 that are piecewise continuous in 𝑡 and locally Lipschitz continuous
in 𝑥. Let 𝑤𝑢 and 𝑤𝑥 be bounded as ‖𝑤𝑢‖ ≤ 𝑤𝑢,max and ‖𝑤𝑥‖ ≤ 𝑤𝑥,max for
some 𝑤𝑢,max, 𝑤𝑥,max ∈ R≥0, and define the set of allowable disturbances
 ≜ {𝑤𝑢 ∈ R𝑚 ∣ ‖𝑤𝑢‖ ≤ 𝑤𝑢,max} × {𝑤𝑥 ∈ R𝑛 ∣ ‖𝑤𝑥‖ ≤ 𝑤𝑥,max}. Assume
a unique solution to (24) exists for all 𝑡 ∈  . Given dynamics (24), a
function 𝜂 ∶  ×R𝑛 → R is said to be of relative-degree 𝑟 if it is 𝑟-times
total differentiable in time and 𝜂(𝑟) is the lowest order derivative in
which 𝑢 and 𝑤𝑢 appear explicitly. Denote the set of all relative-degree
𝑟 functions as 𝑟.

Let ℎ ∶  ×R𝑛 → R, ℎ ∈ 𝑟, denote the constraint function, and define
a safe set  as

(𝑡) ≜ {𝑥 ∈ R𝑛 ∣ ℎ(𝑡, 𝑥) ≤ 0} , (25)

https://github.com/kunalgarg42/fxts_multi_rate
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Fig. 5. Given a safe set  ⊂ R𝑛 as in (25) and input constraints  , this section presents a method of finding a viability domain 𝐻 as in (26) (left) or res
𝐻 as in (27) (right).

Theorem 4.1 then guarantees that res
𝐻 can be rendered forward invariant under any disturbances (𝑤𝑢 , 𝑤𝑥) ∈  while always satisfying the input constraints  .
𝑟

where we will henceforth drop the argument 𝑡 for compactness. Also,
denote the safe set across time as  ≜ {(𝑡, 𝑥) ∈ R×R𝑛 ∣ 𝑡 ∈  , 𝑥 ∈ (𝑡)}.
Our aim is to develop methods for rendering the state trajectory always
inside the safe set  in the presence of any allowable disturbances
(𝑤𝑢, 𝑤𝑥) ∈  . We will do this by constructing functions 𝐻 ∶  ×R𝑛 → R
that generate sets of the form

𝐻 (𝑡) ≜ {𝑥 ∈ R𝑛 ∣ 𝐻(𝑡, 𝑥) ≤ 0} , (26)

res
𝐻 (𝑡) ≜ {𝑥 ∈ R𝑛 ∣ 𝐻(𝑡, 𝑥) ≤ 0 and ℎ(𝑡, 𝑥) ≤ 0} , (27)

visualized in Fig. 5. We refer to the set 𝐻 as an inner safe set (or
also a CBF set), and to the set res

𝐻 as a restricted safe set. Note that if
𝐻(𝑡, 𝑥) ≥ ℎ(𝑡, 𝑥) for all (𝑡, 𝑥) ∈  ×R𝑛, then 𝐻 ≡ res

𝐻 . A controller is said
to render res

𝐻 forward invariant, if given any 𝑥(𝑡0) ∈ res
𝐻 (𝑡0), the closed-

loop trajectory satisfies 𝑥(𝑡) ∈ res
𝐻 (𝑡),∀𝑡 ∈  . In general, there may exist

points 𝑥(𝑡0) ∈ (𝑡0), from which we will not be able to render  forward
invariant under (24). Nevertheless, if we can render the subset res

𝐻 ⊆ 
forward invariant, then we can ensure that the closed loop trajectories
of (24) are safe (i.e. always stay in ) for initial conditions lying in the
set res

𝐻 . Thus, a crucial requirement is that 𝑥(𝑡0) ∈ res
𝐻 (𝑡0). We also

define the domains 
𝐻 ≜ {(𝑡, 𝑥) ∈ R × R𝑛 ∣ 𝑡 ∈  , 𝑥 ∈ 𝐻 (𝑡)} and

res,
𝐻 ≜ {(𝑡, 𝑥) ∈ R × R𝑛 ∣ 𝑡 ∈  , 𝑥 ∈ res

𝐻 (𝑡)} similar to  .

4.1.1. Robust HOCBF definition
Here, we break from the HOCBF convention and instead work with

first-order CBFs. We also only consider relative-degree 2 constraint
functions presently, though (Breeden & Panagou, 2023c) also presents
one method for greater relative degrees. Let 𝜕𝑡 denote the partial
derivative in time 𝑡 and ∇ the gradient in state 𝑥.

Definition 4.1 (Robust CBF). For the system (24), a continuously
differentiable function 𝐻 ∶ ×R𝑛 → R is a robust control barrier function
(RCBF) on a time-varying set  if there exists a function 𝛼 ∈  such
that ∀𝑥 ∈ (𝑡), 𝑡 ∈  ,

max
(𝑤𝑢 ,𝑤𝑥)∈

[

inf
𝑢∈

(

𝜕𝑡𝐻(𝑡, 𝑥) + ∇𝐻(𝑡, 𝑥)
[

𝑓 (𝑡, 𝑥)

+ 𝑔(𝑡, 𝑥)(𝑢 +𝑤𝑢) +𝑤𝑥
]

)]

≤ 𝛼(−𝐻(𝑡, 𝑥)) . (28)

Based on Definition 4.1, we also define for compactness

𝑊 (𝑡, 𝑥) ≜ max
(𝑤𝑢 ,𝑤𝑥)∈

∇𝐻(𝑡, 𝑥)(𝑔(𝑡, 𝑥)𝑤𝑢 +𝑤𝑥) (29)

≡ ‖∇𝐻(𝑡, 𝑥)𝑔(𝑡, 𝑥)‖𝑤𝑢,max + ‖∇𝐻(𝑡, 𝑥)‖𝑤𝑥,max .

The set of control inputs such that (28) is satisfied is then

𝝁rcbf(𝑡, 𝑥) ≜ {𝑢 ∈  ∣ 𝜕𝑡𝐻(𝑡, 𝑥) + ∇𝐻(𝑡, 𝑥)(𝑓 (𝑡, 𝑥)

+𝑔(𝑡, 𝑥)𝑢) ≤ 𝛼(−𝐻(𝑡, 𝑥)) −𝑊 (𝑡, 𝑥)} . (30)

Note that since Definition 4.1 considers the allowable control set  , if
𝐻 is a RCBF on  , then 𝝁 (𝑡, 𝑥) is nonempty for all 𝑥 ∈ (𝑡), 𝑡 ∈  .
7

rcbf
4.1.2. One method for constructing an HOCBF
For the system (24), if ℎ is of relative-degree 2, note that ℎ̇ is a

function of 𝑤𝑥, and ḧ is a function of 𝑤𝑢 and 𝑤𝑥, and thus are not
precisely known. Thus, define the following upper bound on ℎ̇:

ℎ̇𝑤(𝑡, 𝑥) ≜ max
‖𝑤𝑥‖≤𝑤𝑥,max

ℎ̇(𝑡, 𝑥,𝑤𝑥) (31)

=𝜕𝑡ℎ(𝑡, 𝑥) + ∇ℎ(𝑡, 𝑥)𝑓 (𝑡, 𝑥) + ‖∇ℎ(𝑡, 𝑥)‖𝑤𝑥,max

and its derivative

ℎ̈𝑤(𝑡, 𝑥, 𝑢, 𝑤𝑢, 𝑤𝑥) =
𝑑
𝑑𝑡
ℎ̇𝑤(𝑡, 𝑥) (32)

= 𝜕𝑡ℎ̇𝑤(𝑡, 𝑥) + ∇ℎ̇𝑤(𝑡, 𝑥)𝐹 (𝑡, 𝑥, 𝑢, 𝑤𝑢, 𝑤𝑥) .

Note that ℎ̇𝑤 is a known quantity, while ℎ̈𝑤 is still a function of the
unknown quantities 𝑤𝑢, 𝑤𝑥 in 𝐹 .

For a relative-degree 2 constraint, we can intuitively describe ℎ as
the position of an agent with respect to an obstacle, ℎ̇ its velocity, and
ḧ its acceleration, where acceleration is the controlled variable. Given
some maximal amount of control authority encoded in  , suppose that
there exists some function 𝜙 ∶ R → R such that

max
(𝑤𝑢 ,𝑤𝑥)∈

inf
𝑢∈

ℎ̈𝑤(𝑡, 𝑥, 𝑢, 𝑤𝑢, 𝑤𝑥) ≤ 𝜙(ℎ(𝑡, 𝑥)) < 0 . (33)

This is a reasonable assumption for many systems since intuitively 𝜙
represents the effects of other forces/accelerations in the environment.
Given models of these forces, one can often read the function 𝜙 directly
from the dynamics. If no such function 𝜙 exists, it may instead be
possible to find such a function 𝜙 for a tighter constraint function,
e.g. ℎ† = ℎ + 𝛾. We then have the following theorem.

Theorem 4.1 (Method to Construct a RCBF). Let ℎ ∈ 2 define a safe set
as in (25). Suppose there exists an invertible, continuously differentiable,
and strictly monotone decreasing function 𝛷 ∶ R → R, whose derivative is
𝛷′ = 𝜙 for 𝜙 ∶ R → R, such that (33) holds ∀(𝑡, 𝑥) ∈  . Let 𝛷−1 be the
function for which 𝛷−1(𝛷(𝜆)) = 𝜆,∀𝜆 ∈ R. Then the function

𝐻(𝑡, 𝑥) = 𝛷−1
(

𝛷(ℎ(𝑡, 𝑥)) − 1
2
ℎ̇𝑤(𝑡, 𝑥)|ℎ̇𝑤(𝑡, 𝑥)|

)

(34)

is a RCBF on res
𝐻 in (27) for the system (24) for any 𝛼 ∈ . Moreover, any

control law 𝑢(𝑡, 𝑥) such that 𝑢(𝑡, 𝑥) ∈ 𝝁rcbf(𝑡, 𝑥),∀(𝑡, 𝑥) ∈ res,
𝐻 also renders

res
𝐻 forward invariant.

That is, if (33) holds, then we have a constructive way to find a
CBF 𝐻 as a function of ℎ and ℎ̇𝑤. Note that the intersection of sets
res
𝐻 = 𝐻 ∩  is analogous to the intersection 𝐶1 ∩ 𝐶2 in Xiao and

Belta (2019b, Def. 7). See Breeden and Panagou (2023c) for more
information.

4.1.3. Case study and remarks
To see Theorem 4.1 in practice, consider the system with state

𝑥 = [𝑟T, 𝑟̇T]T ∈ R6 with dynamics

̈ = −
𝜇

𝑟 + 𝑢 (35)

‖𝑟‖3



Annual Reviews in Control 57 (2024) 100945K. Garg et al.

ℎ

f
f

ℎ

A
a

𝛷

R
S
𝑊

T
c

𝜕

w
𝐻

t
P
o
A
c
a
t

4

a
r
s
l
p
f
a
W
D
f

4

n
i
b
t
o
p
s

𝑢
A
f

𝑏

w
p
s


W
T

D
f

𝑢

for 𝜇 = 6.26(10)10, and constraint function

= 𝜌 − ‖𝑟‖ (36)

or 𝜌 = 4.76(10)5. Let  = {𝑢 ∈ R3 ∣ ‖𝑢‖∞ ≤ 𝑢max}. For this constraint
unction, it holds that

̈ 𝑤 ≤ 𝜇
‖𝑟‖2

−
𝑟T(𝑢 +𝑤𝑥 +𝑤𝑢)

‖𝑟‖
+
𝑤2
𝑥,max
4𝜌

(37)

It follows that

max
(𝑤𝑢 ,𝑤𝑥)∈

inf
𝑢∈

ℎ̈𝑤 ≤ 𝜇
(𝜌 − ℎ)2

+
𝑤2
𝑥,max
4𝜌

+𝑤𝑥,max +𝑤𝑢,max − 𝑢max

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝜙(ℎ)

(38)

ssuming that (38) is always negative for ℎ ≤ 0, then let 𝛷 be any
nti-derivative of 𝜙 in (38), such as

(𝜆) =
𝜇

𝜌 − 𝜆
+ (𝑤𝑢,max +𝑤𝑥,max − 𝑢max)𝜆 . (39)

and Theorem 4.1 guarantees that 𝐻 as in (34) with (39) is a RCBF.
Thus, we have a constructive method of synthesizing a RCBF for this
system. This RCBF was then used in simulation in Breeden and Panagou
(2022a, 2023c).

We now consider how the above approach relates to the more
widely used HOCBF formulation in Xiao and Belta (2019b) and to the
Exponential CBF (ECBF) formulation in Nguyen and Sreenath (2016)
(which is a special case of Xiao and Belta (2019b)). Given a relative-
degree 2 constraint function ℎ meeting the assumptions of Theorem 4.1,
ℎ is also an HOCBF

𝜓0 = ℎ (40a)

𝜓1 = ℎ̇ − 𝛼1(−ℎ) (40b)

𝜓2 = ℎ̈ + 𝛼′1(−ℎ)ℎ̇ − 𝛼2(−𝜓1) (40c)

with choice

𝛼1(𝜆) =
√

2(𝛷(−𝜆) −𝛷(0)) (41)

and with 𝛼2 ∈  as a free variable. Thus, one can map between the ap-
proaches in Breeden and Panagou (2023c) and Xiao and Belta (2019b).
However, the choice of 𝛼1 in (41) is (1) non-obvious without the
above analysis, and (2) violates the Lipschitzness assumptions present
in Xiao and Belta (2019b). Also, while our method is constructive, it is
conservative in the sense that it results in a CBF that is valid for any
class- function 𝛼 in (30), and as a result is valid for any 𝛼2 using the
conventions of Xiao and Belta (2019b); Theorem 4.1 could potentially
be applicable to a wider class of systems if this was relaxed.

Lastly, the ECBF is an HOCBF that uses only linear class- functions.
We note that if ḧ is bounded (as is usually the case when  is
compact), then the ECBF can only be used with compact safe sets. This
is because the ECBF, similar to a linear control law, requires stronger
accelerations ḧ, and hence larger 𝑢, as the state moves further from the
safe set boundary. By contrast, the CBF in Theorem 4.1 works with an
unbounded safe set and admits an unbounded inner safe set while still
only commanding signals 𝑢 ∈  everywhere in the CBF set.

4.1.4. Robustly reachable sets
Finally, since the system (24) is uncertain and the control (30)

always considers the worst-case disturbance, it is worth considering
the set of states that the system might reach. Frequently, the system
evolution can be divided into arcs where either (1) the CBF condition
is inactive, or (2) the CBF condition is satisfied with equality. Consider
the behavior under the latter case.

Theorem 4.2 (RCBF Asymptotic Set). Suppose 𝐻 ∶  × R𝑛 → R is a
CBF on the set 𝐻 (𝑡) (or res

𝐻 if using 𝐻 in (34)) for the system (24).
uppose there exists constants 𝜂1, 𝜂2 > 0 such that 𝑊 in (29) satisfies
(𝑡, 𝑥) ∈ [𝜂 , 𝜂 ],∀𝑥 ∈  (𝑡), 𝑡 ∈  . Let 𝛼 ∈ . Suppose 𝐻(𝑡 , 𝑥(𝑡 )) ≤ 0.
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1 2 𝐻 𝑤 0 0 t
hen any control law 𝑢(𝑡, 𝑥) piecewise continuous in 𝑡 and locally Lipschitz
ontinuous in 𝑥 that satisfies

𝑡𝐻(⋅) + ∇𝐻(⋅)(𝑓 (𝑡, 𝑥) + 𝑔(𝑡, 𝑥)𝑢) +𝑊 (𝑡, 𝑥) = 𝛼𝑤(−𝐻(⋅))𝑊 (𝑡, 𝑥) (42)

ill cause the system trajectory to asymptotically approach the set {𝑥 ∈ R𝑛 ∣
(𝑡, 𝑥) ∈ [−𝛼−1𝑤 (2), 0]}.

That is, by varying 𝛼𝑤, we can tune how close to the boundary of 𝐻
rajectories will approach. This theorem is put to use in Breeden and
anagou (2022a) to achieve satisfaction of a so-called ‘‘tight-tolerance’’
bjective with RCBFs. See also (Alan, Molnar, Ames, & Orosz, 2023;
lan, Taylor, He, Orosz, & Ames, 2021). The above result is also
losely related to the definition of ‘‘physical margin’’ in Section 7.2,
s robustness to unknown disturbances is closely related to robustness
o inter-sampling uncertainty.

.1.5. Open problems
The above results and those in Breeden and Panagou (2023c),

nd the references therein, demonstrate that CBFs can be applied to
elative-degree 2 systems with input constraints. However, there are
till many systems that do not satisfy the conditions in the current
iterature and thus developing CBFs for these systems remains an open
roblem. Additionally, the above work only applies to one constraint
unction and CBF at a time. Working with multiple CBFs simultaneously
nd in the presence of input constraints is also an open problem.
e refer the reader to Breeden and Panagou (2023b) and Tan and
imarogonas (2022) for some constructive, albeit preliminary, methods

or this problem.

.2. Input-constrained control barrier functions

As discussed above, designing Control Barrier Functions for general
onlinear control-affine systems is challenging. When the system is also
nput constrained, this becomes further challenging, since there can
e regions of the state–space where the CBF condition (4) is instan-
aneously satisfied, but the system will eventually reach the boundary
f the safe set and then exit it. In Agrawal and Panagou (2021) we
roposed a technique to isolate such states and identify an inner safe
et that can be rendered forward invariant under the input constraints.

Consider the dynamical system (1) with bounded control inputs
∈  and a safe set  defined by a function ℎ ∶  → R, as per (2).
ssume ℎ is not a CBF on . We define the following sequence of

unctions:

𝑏0(𝑥) = ℎ(𝑥) (43a)

𝑏1(𝑥) = inf𝑢∈ [𝐿𝑓 𝑏0(𝑥) + 𝐿𝑔𝑏0(𝑥)𝑢 + 𝛼0(𝑏0(𝑥))] (43b)

𝑏2(𝑥) = inf𝑢∈ [𝐿𝑓 𝑏1(𝑥) + 𝐿𝑔𝑏1(𝑥)𝑢 + 𝛼1(𝑏1(𝑥))] (43c)
⋮

𝑁 (𝑥) = inf𝑢∈ [𝐿𝑓 𝑏𝑁−1(𝑥) + 𝐿𝑔𝑏𝑁−1(𝑥)𝑢

+ 𝛼𝑁−1(𝑏𝑁−1(𝑥))] (43d)

here each 𝛼𝑖 is some user-specified class- function, and 𝑁 is a
ositive integer. We assume the functions 𝑓, 𝑔, ℎ are sufficiently smooth
uch that 𝑏𝑁 and its derivative are defined. We also define the sets
0 = {𝑥 ∈  ∶ 𝑏0(𝑥) ≥ 0} = , 1 = {𝑥 ∈  ∶ 𝑏1(𝑥) ≥ 0}, … ,
𝑁 = {𝑥 ∈  ∶ 𝑏𝑁 (𝑥) ≥ 0} and their intersection ∗ = 0 ∩ 1 ∩ ... ∩ 𝑁 .
e assume the set ∗ is closed, non-empty and has no isolated points.

he sets are visualized in Fig. 6.

efinition 4.2. For the above construction, if there exists a class-
unction 𝛼𝑁 such that

sup
∈

[𝐿𝑓 𝑏𝑁 (𝑥) + 𝐿𝑔𝑏𝑁 (𝑥)𝑢 + 𝛼𝑁 (𝑏𝑁 (𝑥))] ≥ 0 ∀𝑥 ∈ ∗, (44)
hen 𝑏𝑁 is an Input Constrained Control Barrier Function (ICCBF).
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Fig. 6. Visual representation of ICCBF method. The safe set  and two intermediate
sets 1 and 2 are drawn. The final inner safe set ∗ is the intersection of each of these
ets and can be rendered forward invariant.

Note, this does not require 𝑏𝑁 to be a CBF on 𝑁 . The definition
only requires condition (44) to hold for all 𝑥 ∈ ∗ which is a subset of
𝑁 .

The main result of Agrawal and Panagou (2021) is stated as:

Theorem 4.3. Given the input constrained dynamical system (1), if
𝑏𝑁 , defined by (43a)–(43d), is an ICCBF, then any Lipschitz continuous
controller 𝑢 ∶ ∗ →  such that 𝑢(𝑥) ∈ 𝐾𝐼𝐶𝐶𝐵𝐹 (𝑥), where 𝐾𝐼𝐶𝐶𝐵𝐹 (𝑥) =
{𝑢 ∈  ∶ 𝐿𝑓 𝑏𝑁 (𝑥) + 𝐿𝑔𝑏𝑁 (𝑥)𝑢 ≥ −𝛼𝑁 (𝑏𝑁 (𝑥))} renders the set ∗ ⊆ 
forward invariant.

Remark 4.1. Time-invariant Higher Order CBFs, as in Xiao and
Belta (2019a), are a special case of ICCBFs. For instance, in systems
of relative degree 2, 𝐿𝑔ℎ(𝑥) = 0 for all 𝑥 ∈ . In this case, in the
construction of ICCBFs we have 𝑏1(𝑥) = inf𝑢∈ [𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 +
𝛼0(ℎ(𝑥))] = inf𝑢∈ [𝐿𝑓ℎ(𝑥) + 𝛼0(ℎ(𝑥))] = 𝐿𝑓ℎ(𝑥) + 𝛼0(ℎ(𝑥)) which is
exactly the function defined in Xiao and Belta (2019a). This repeats
for any relative degree greater than 2, and thus for a system with
relative degree 𝜌, the first 𝜌 expressions of ICCBFs are identical to those
of HOCBFs. Moreover, ICCBFs can handle systems with non-uniform
relative degrees, by choosing 𝑁 greater or equal to the largest relative
degree of the system in .

4.2.1. Example: Adaptive cruise control
As a demonstration, we apply ICCBFs to the Adaptive Cruise Control

(ACC) problem of Ames et al. (2014). Consider a point-mass model of
a vehicle moving in a straight line. The vehicle is following a vehicle 𝑑
distance in-front, moving at a known constant speed 𝑣0. The objective
is to design a controller to accelerate to the speed limit but prevent
the vehicles from colliding. The dynamics model and safety constraints
are as in Ames et al. (2014),  = {𝑥 ∈  ∶ ℎ(𝑥) = 𝑥1 − 1.8𝑥2 ≥ 0}.
In addition, we impose the input constraints  = {𝑢 ∶ |𝑢| ≤ 0.25},
representing a maximum acceleration or deceleration of 0.25 g. One
can verify that  cannot be rendered forward invariant under the input
constraints, and therefore we use the ICCBF construction technique to
design an inner safe set.

We (arbitrarily) choose 𝑁 = 2 and the class  functions 𝛼0(ℎ) = 4ℎ,
𝛼1(ℎ) = 7

√

ℎ, 𝛼2(ℎ) = 2ℎ to define the functions 𝑏1, 𝑏2 and sets 1,2. To
(approximately) verify that 𝑏2 is an ICCBF, we used a nonlinear opti-
mization to determine that (44) was satisfied (see Agrawal & Panagou,
2021 for details). The sets 0,1,2,∗ are visualized in Fig. 7.

Fig. 7(e–g) compares the CLF-CBF-QP controller of Ames et al.
(2014) (blue) to our proposed controller (green),

𝜋(𝑥) = argmin
𝑢∈R

1
2
(𝑢 − 𝜋𝑑 (𝑥))2 (45a)

s.t. 𝐿𝑓 𝑏2(𝑥) + 𝐿𝑔𝑏2(𝑥)𝑢 ≥ −2𝑏2(𝑥) (45b)

𝑢 ∈  (45c)

where 𝜋𝑑 (𝑥) is the desired acceleration, computed using a Control
Lyapunov Function 𝑉 (𝑥) = (𝑥2 − 𝑣𝑚𝑎𝑥)2, where 𝑣𝑚𝑎𝑥 = 24 is the speed
limit.
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The (standard) CLF-CBF-QP reaches the input constraint at 𝑡 =
5.9 seconds, and thus the input constraints force the system to leave
the safe set. In contrast, the ICCBF-QP remains feasible and safe for the
entire duration, by applying brakes early, at 𝑡 = 2.9 seconds. Thus, by
explicitly accounting for input constraints ICCBF-QP controller keeps
the input-constrained system safe.

In the interest of space, the reader is referred to Agrawal and
Panagou (2021) for additional details and examples on how to con-
struct ICCBFs for relatively simple systems. How to systematically
construct ICCBFs is part of our ongoing work.

5. Adaptation: How to prevent loss of controllability, and how to
reduce conservatism of the system response?

In this section, we present some results that involve online adap-
tation of CBFs towards two main challenges: The first is to ensure
that a candidate CBF will remain a valid CBF throughout the system
trajectories, and the second is to reduce the conservatism of the system
response by allowing trajectories to approach closer to the boundary of
the safety set.

5.1. Online verification via consolidated CBFs

Verifying a candidate CBFs as valid, i.e., proving that the CBF
condition is satisfiable via available control authority in perpetuity,
is a challenging and rather underdeveloped problem. For isolated or
single-CBF constraints, verifying or finding valid CBFs under either
unlimited (Ames et al., 2017), or bounded control authority (Breeden
& Panagou, 2021; Xiao, Belta, & Cassandras, 2022), or by consider-
ing sparse constraints (i.e., only one at a time), either by assump-
tion (Cortez, Tan, & Dimarogonas, 2022; Zhao, He, & Liu, 2022) or
construction in a non-smooth manner (Glotfelter, Cortés, & Egerstedt,
2017; Huang & Chen, 2020) is a fairly studied task. However, these
methods do not extend to multiple constraints. For such cases, adap-
tation of class  functions (Parwana, Mustafa, & Panagou, 2022) and
safe-RL policies (Berducci, Yang, Mangharam, & Grosu, 2023) has been
shown to improve CBF-QP feasibility, but typically lacks guarantees.
Some recent works synthesize and/or verify a CBF using sum-of-squares
optimization (Clark, 2021), supervised machine learning (Robey et al.,
2020; Srinivasan, Dabholkar, Coogan, & Vela, 2020), and Hamilton–
Jacobi-Bellman reachability analysis (Tonkens & Herbert, 2022; Yang
et al., 2023), but are limited to offline tools.

In our recent work (Black & Panagou, 2023a), we consider a multi-
agent system, each of whose 𝐴 constituent agents is modeled by the
following class of nonlinear, control-affine dynamical systems:

𝒙̇𝑖 = 𝑓𝑖(𝒙𝑖) + 𝑔𝑖(𝒙𝑖)𝒖𝑖, (46)

where 𝒙𝑖 ∈ R𝑛 and 𝒖𝑖 ∈ 𝑖 ⊆ R𝑚 are the state and control input
ectors for the 𝑖th agent, with 𝑖 the input constraint set, and where
𝑖 ∶ R𝑛 → R𝑛 and 𝑔𝑖 ∶ R𝑛 → R𝑛×𝑚 are known, locally Lipschitz, and not
ecessarily homogeneous ∀𝑖 ∈  = [𝐴]. The concatenated state vector
s 𝒙 = [𝒙1 ⊤,… ,𝒙𝐴 ⊤] ⊤ ∈ R𝑁 , the concatenated control input vector is
= [𝒖1 ⊤,… , 𝒖𝐴 ⊤] ⊤ ∈  ⊆ R𝑀 , and as such the full system dynamics

are

𝒙̇ = 𝐹 (𝒙(𝑡)) + 𝐺(𝒙(𝑡))𝒖(𝒙(𝑡)), 𝒙(0) = 𝒙0, (47)

here 𝐹 = [𝑓1 ⊤,… , 𝑓𝐴 ⊤] ⊤ ∶ R𝑁 → R𝑁 and 𝐺 = diag([𝑔1,… , 𝑔𝐴]) ∶
𝑁 → R𝑁×𝑀 . Consider also a collection of 𝑐 > 1 state constraints,
ach described by a function ℎ𝑠 ∈ 1 ∶ R𝑁 → R for 𝑠 ∈ [𝑐]. Each
𝑠 is a candidate CBF (hereafter referred to as a constituent constraint
unction) and defines a set

𝑠 = {𝒙 ∈ R𝑁 ∣ ℎ𝑠(𝒙) ≥ 0}, (48)

hat obeys the same structure as (2). The following assumption is
equired, otherwise, it is impossible to satisfy all constraints jointly.

ssumption 5.1. The intersection of constraint sets is non-empty,
⋂𝑐
.e.,  = 𝑠=1 𝑠 ≠ ∅.
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Fig. 7. Figures (a–d): State–space diagrams indicating the sets (a) , (b) 1, (c) 2 and (d) ∗. The horizontal dashed line in (a) indicates 𝑣0, the speed of the car in-front. Figure (d)
represents the inner safe set ∗ that is rendered forward invariant. Figures (e–g): Simulation results for speed, control input, and safety under the CLF-CBF-QP controller (Ames,
Grizzle, & Tabuada, 2014) and the ICCBF-QP.
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5.1.1. Definition of consolidated CBFs
Define a positive gain vector 𝒌 = [𝑘1 … 𝑘𝑐 ] ⊤ ∈ R𝑐+. A consolidated

CBF (C-CBF) candidate 𝐻 ∶ R𝑁 × R𝑐+ → R takes the following form:

𝐻(𝒙,𝒌) = 1 −
𝑐
∑

𝑠=1
𝜙
(

ℎ𝑠(𝒙), 𝑘𝑠
)

, (49)

where 𝜙 ∈ 1 ∶ R+ × R+ → R+ belongs to class  and satisfies5

𝜙(ℎ𝑠, 0) = 𝜙(0, 𝑘𝑠) = 𝜙(0, 0) = 1. It follows that the set (𝒌) =
{𝒙 ∈ R𝑁 ∣ 𝐻(𝒙,𝒌) ≥ 0} is a subset of  (i.e., (𝒌) ⊂ ), where
the level of closeness of (𝒌) to  depends on the choices of gains
𝒌. This may be confirmed by observing that if any ℎ𝑠(𝒙) = 0 then
𝐻(𝒙) ≤ 1 − 1 −

∑𝑐
𝑗=1,𝑗≠𝑠 𝜙(ℎ𝑗 (𝒙), 𝑘𝑗 ) < 0, and thus for 𝐻(𝒙) ≥ 0 it must

hold that ℎ𝑠(𝒙) > 0, for all 𝑠 ∈ [𝑐].
Now, if 𝐻 is a valid C–CBF over the set (𝒌), then (𝒌) is forward

invariant and thus the trajectories of (47) remain safe with respect
to each constituent safe set 𝑠, ∀𝑠 ∈ [𝑐]. For a static gain vector
(i.e., 𝒌̇ = 𝟎𝑐×1) the function 𝐻 is a CBF on the set  if there exists
𝛼𝐻 ∈ ∞ such that the following condition holds for all 𝒙 ∈  ⊃ (𝒌):

𝐿𝐹𝐻(𝒙,𝒌) + 𝐿𝐺𝐻(𝒙,𝒌)𝒖(𝒙) ≥ −𝛼𝐻 (𝐻(𝒙,𝒌)), (50)

where from (49) it follows that

𝐿𝐹𝐻(𝒙) = −
𝑐
∑

𝑠=1

𝜕𝜙
𝜕ℎ𝑠

𝐿𝐹ℎ𝑠(𝒙), (51)

𝐿𝐺𝐻(𝒙) = −
𝑐
∑

𝑠=1

𝜕𝜙
𝜕ℎ𝑠

𝐿𝐺ℎ𝑠(𝒙). (52)

gain taking 𝜙(ℎ𝑠, 𝑘𝑠) = 𝑒−ℎ𝑠𝑘𝑠 as an example, we obtain that 𝜕𝜙
𝜕ℎ𝑠

=
−𝑘𝑠𝑒−ℎ𝑠𝑘𝑠 , in which case it is evident that the role of the gain vector 𝒌
is to weight the constituent constraint functions ℎ𝑠 and their derivative
terms 𝐿𝐹ℎ𝑠 and 𝐿𝐺ℎ𝑠 in the CBF condition (50). In this case, a higher
alue 𝑘𝑠 indicates a weaker weight in the CBF dynamics, as the expo-
ential decay overpowers the linear growth. Due to the combinatorial
ature of these gains, for an arbitrary 𝒌 there may exist some 𝒙 ∈ (𝒌)

such that 𝐿𝐺𝐻(𝒙) = 𝟎1×𝑀 , which lead to the state exiting (𝒌) (and

5 For example, the decaying exponential function, i.e., 𝜙(ℎ𝑠, 𝑘𝑠) = 𝑒−ℎ𝑠𝑘𝑠 ,
satisfies the requirements over the domain R × R .
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otentially  as a result). Using online adaptation of 𝒌, however, it may
e possible to achieve 𝐿𝐺𝐻(𝒙(𝑡)) ≠ 𝟎1×𝑀 for all 𝑡 ≥ 0, which motivates
he following problem.

roblem 5.1. Given a C–CBF candidate 𝐻 ∶ R𝑁 × R𝑐+ → R defined
by (49), design an adaptation law 𝒌̇ = 𝜅(𝒙,𝒌) such that 𝐿𝐺𝐻(𝒙(𝑡)) ≠
𝟎1×𝑀 , ∀𝑡 ≥ 0.

5.1.2. C-CBF weight adaptation law

Assumption 5.2. Let the intersection of constraint sets be denoted ;
the matrix of controlled constituent function dynamics 𝑳𝐺 ∈ R𝑐×𝑀 is
ot all zero, i.e.,

𝐺(𝒙) ≜
⎡

⎢

⎢

⎣

𝐿𝐺ℎ1(𝒙)
⋮

𝐿𝐺ℎ𝑐 (𝒙)

⎤

⎥

⎥

⎦

≠ 𝟎𝑐×𝑀 , ∀𝒙 ∈  . (53)

The above requires non-zero sensitivity of at least one constraint
unction ℎ𝑠 to the control input 𝒖. It is a mild condition and is easily
atisfiable when at least one ℎ𝑠 is of relative-degree one with respect to
he system (47). In what follows, it is shown that the ensuing QP-based
daptation law renders a C–CBF as valid.
C-CBF-QP)

(𝒙,𝒌) = arg min
𝝁∈R𝑐

1
2
(𝝁 − 𝝁0(𝒙)) ⊤ 𝑷 (𝝁 − 𝝁0(𝒙)) (54a)

s.t. 𝜇𝑠 + 𝛼𝑘(𝑘𝑠 − 𝑘𝑠,𝑚𝑖𝑛) ≥ 0, ∀𝑠 ∈ [𝑐], (54b)

𝒑 ⊤(𝒙)𝑸(𝒙)𝒑̇ + 1
2
𝒑 ⊤(𝒙)𝑸̇𝒑(𝒙) + 𝛼𝑝(ℎ𝑝(𝒙)) ≥ 0, (54c)

here 𝑷 ∈ R𝑐×𝑐 is a positive-definite gain matrix, 𝛼𝑘, 𝛼𝑝 ∈ ∞, 𝝁0 ∈ R𝑐
s the desired solution, 𝒌𝑚𝑖𝑛 = [𝑘1,𝑚𝑖𝑛,… , 𝑘𝑐,𝑚𝑖𝑛] ⊤ is the vector of mini-

mum allowable values 𝑘𝑠,𝑚𝑖𝑛 > 0, and 𝒑(𝒙) ≜
[

𝜕𝜙(𝒙)
𝜕ℎ1

… 𝜕𝜙(𝒙)
𝜕ℎ𝑐

]⊤
,𝑸(𝒙) ≜

𝑰 − 2𝑵𝑵 ⊤ −𝑵𝑵 ⊤𝑵𝑵 ⊤ with ℎ𝑝(𝒙) = 1
2𝒑

⊤(𝒙)𝑸(𝒙)𝒑(𝒙) − 𝜀, 𝜀 > 0,
nd 𝑵 = 𝑵(𝒙) ≜ [𝒏1(𝒙) … 𝒏𝑟(𝒙)], such that {𝒏1(𝒙),… ,𝒏𝑟(𝒙)}
onstitutes a basis for the null space of 𝑳𝐺 ⊤(𝒙), i.e.,  (𝑳𝐺 ⊤(𝒙)) =
pan{𝒏1(𝒙),… ,𝒏𝑟(𝒙)}, where 𝑳𝐺(𝒙) is given by (53).

heorem 5.1. Suppose that there exist 𝑐 > 1 constraint functions
𝑁 𝑁
𝑠 ∶ R → R defining sets 𝑠 = {𝒙 ∈ R ∣ ℎ𝑠(𝒙) ≥ 0}, ∀𝑠 ∈ [𝑐], that
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Fig. 8. XY paths for the warehouse robots (blue) and non-responsive agents (red) in
the warehouse control problem.

Assumptions 5.1 and 5.2 hold, and that  = R𝑀 . If 𝒌(0) is such that
𝐿𝐺𝐻(𝒙(0)) ≠ 𝟎1×𝑀 , then under 𝒌̇ = 𝜅(𝒙,𝒌) the controlled C–CBF dynamics
are non-vanishing provided that (54) is feasible, i.e., 𝐿𝐺𝐻(𝒙(𝑡)) ≠ 𝟎1×𝑀 ,
∀𝑡 ≥ 0.

It follows that if the premises of Theorem 5.1 hold, then the function
𝐻 defined by (49) is a CBF for (𝒌(𝑡)) = {𝒙 ∈ R𝑁 ∣ 𝐻(𝒙,𝒌) ≥ 0}, ∀𝑡 ≥ 0.

5.1.3. Simulation results: Multi-robot coordination
Consider 3 non-communicative, but responsive robots (𝑖 ∈ 𝑛𝑐 ⧵

𝑛𝑐𝑛𝑟) in a warehouse environment seeking to traverse a narrow corri-
dor intersected by a passageway occupied with 6 non-responsive agents
(𝑗 ∈ 𝑛𝑐𝑛𝑟). The non-responsive agents may be, e.g., humans walking
or some other dynamic obstacles. Each robot is modeled according
to a kinematic bicycle model described by Rajamani (2012, Ch. 2):
which we omit here in the interest of space; the reader can refer to
the complete case study in Black and Panagou (2023a). The safety
constraints for each robot are to (1) obey the velocity restriction,
(2) remain inside the corridor area and (3) avoid collisions with all
other robots. As such, each robot has three constituent constraint sets
(defined explicitly in Black and Panagou (2023a)), the intersection of
which constitutes the safe set for each robot. The robots 𝑖 ∈ 𝑛𝑐 ⧵
𝑛𝑐𝑛𝑟 are controlled using a C–CBF based decentralized controller with
constituent functions ℎ𝑐 , ℎ𝑠, ℎ𝑟, an LQR based nominal control input
(see Black, Jankovic, Sharma, & Panagou, 2023, Appendix 1), and
initial gains 𝒌(0) = 𝟏10×1. The non-responsive agents used a similar LQR
controller to move through the passageway in pairs of two, with the
first two pairs passing through the intersection without stopping and
the last pair stopping at the intersection before proceeding.

As shown in Figs. 8 and 9, the non-communicative robots traverse
both the narrow corridor and the busy intersection to reach their
goal locations safely. These results demonstrate that the C–CBF-based
adaptive controllers maintained safety and control viability at all times
amongst 10 state constraints.

5.2. Parameter adaptation with rate tunable CBFs

In a recent parallel thread of work, instead of designing adaptive
laws for the control coefficient 𝐿 ℎ (𝑡, 𝑥), we consider the adaptation
11

𝑔 𝑖
Fig. 9. Evolution of C–CBF 𝐻 for warehouse robots 1, 2, and 3.

of the parameters introduced through a class- function in the CBF
condition. In Parwana et al. (2022) we introduce a new notion of a
Rate-Tunable Control Barrier Function (RT-CBF), which allows con-
sideration of parametric class  functions, and adaptation of their
parameters online so that the response of the controller becomes less
or more conservative, without jeopardizing safety. It is also noteworthy
that this adaptation facilitates the consideration and satisfaction of mul-
tiple time-varying barrier constraints, by making them easier to tune
for performance, especially when they do not represent similar physical
quantities (e.g., when imposing constraints on the rotational dynamics,
and constraints on the translational dynamics for a quadrotor).

Designing the parameter dynamics is a non-trivial task, especially
in the presence of multiple constraints. We have studied point-wise
sufficient conditions on the rate of change of parameters for enforcing
feasibility. Although the point-wise design is suboptimal, it is shown
empirically to improve upon the standard CBF-QP controllers. It also
allows the incorporation of user-designed rules (e.g., heuristics) for
updating the class  function and projecting it to a set of feasible
update rules. As a case study, we design RT-CBFs for decentralized
control for multi-robot systems in Parwana et al. (2022). Specifically,
we design the parameter dynamics based on a trust factor, which
in turn is defined on the instantaneous ease of satisfaction of the
CBF constraints, and illustrate how this can be applied to robots of
heterogeneous dynamics.

5.2.1. Definition of rate-tunable CBFs
For ease of understanding, we illustrate our theory with examples

that only consider linear class  functions of the following form in the
ensuing.

𝛼𝑘𝑖 (𝑧) = 𝜈𝑘𝑖 𝑧, 𝜈𝑘𝑖 ∈ R+. (55)

Since we allow parameters 𝜈𝑘𝑖 to vary with time, the derived barrier
functions in (5b) for, for example, a second-order barrier function are
given as follows

𝜓0
𝑖 = ℎ𝑖, (56a)

𝜓1
𝑖 = 𝜓̇0 + 𝜈1𝑖 𝜓

0
𝑖 , (56b)

𝜓2
𝑖 = 𝜓̈0 + 𝜈̇1𝑖 𝜓

0
𝑖 + 𝜈1𝑖 𝜓̇

0
𝑖 + 𝜈2𝑖 (𝜓

0
𝑖 + 𝜈1𝑖 𝜓

0
𝑖 ), (56c)

where 𝜓2
𝑖 = 𝜓̇1

𝑖 + 𝜈2𝑖 𝜓
1
𝑖 ≥ 0 is the CBF condition (8c) that is

used to design the control input. We denote the parameters and their
derivatives contributing to the CBF condition (56c) as 𝛩𝛼𝑖 ∈ R𝑛𝛼 and
the objective is to design 𝛩̇𝛼𝑖 . For example, for (56), 𝛩𝛼𝑘𝑖 = [𝜈1𝑖 , 𝜈̇

1
𝑖 , 𝜈

2
𝑖 ]
𝑇

and

𝛩̇𝛼𝑖 =

⎡

⎢

⎢

⎢

⎣

𝜈̇1𝑖
𝜈̈1𝑖
𝜈̇2𝑖

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 1 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

𝛩𝛼𝑖 +
⎡

⎢

⎢

⎣

0 0
1 0
0 1

⎤

⎥

⎥

⎦

[

𝜈̈1𝑖
𝜈̇2𝑖

]

(57)

Note that the derivatives to be designed, namely 𝜈̈1𝑖 , 𝜈̇
2
𝑖 , do not appear

in the CBF condition (56c) that is imposed in QP to design the control
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s

i

𝜓

𝑐
T
ℎ
a
c
P

a

input. This allows for decoupling the design of the control input and
the parameter dynamics.

Consider the system dynamics in (1) augmented with the state 𝛩𝛼 ∈
R𝑛𝛼 that obeys the dynamics
[

𝑥̇
𝛩̇𝛼𝑖

]

=
[

𝑓 (𝑥) + 𝑔(𝑥)𝑢
𝑓𝛼𝑖 (𝑥,𝛩𝛼𝑖 )

]

, (58)

where 𝑓𝛼𝑖 ∶ ×𝑖 → 𝑖 is a locally Lipschitz continuous function w.r.t.
(𝑥,𝛩𝛼𝑖 ), where 𝑖 ⊂ R𝑛𝛼𝑖 is a compact set, 𝑖 ∈ {1,… , 𝑁}.

Assume that 𝛩𝛼𝑖 (𝑡) ∈ 𝑖, ∀𝑡 ≥ 0, where 𝑖 ⊂ R𝑛𝛼𝑖 is a compact
et. Let the set of allowable states 𝑖(𝑡) at time 𝑡 be defined as the 0-

superlevel set of a function ℎ𝑖 ∶ R+ ×  → R as in (2). Suppose ℎ𝑖 has
relative degree 𝑟𝑖 w.r.t the control input 𝑢 and define functions 𝜓𝑘𝑖 as:

𝜓0
𝑖 (𝑡, 𝑥) = ℎ𝑖(𝑡, 𝑥), (59a)

𝜓𝑘𝑖 (𝑡, 𝑥) = 𝜓̇𝑘−1𝑖 (𝑡, 𝑥, 𝛩𝛼𝑘𝑖 ) + 𝛼
𝑘
𝑖 (𝜓

𝑘−1
𝑖 (𝑡, 𝑥, 𝛩𝛼𝑘𝑖 )), (59b)

𝑘 ∈ {1, 2,… , 𝑟𝑖 − 1}.

Definition 5.1 (Rate-Tunable CBF). A (single) constraint function ℎ𝑖 ∶
R+ ×  → R is a Rate-Tunable Control Barrier Function (RT-CBF) for
the set 𝑖(𝑡) under the augmented system (58) if for every initial state
𝑥(0) ∈ 𝑖(0), there exists 𝛩𝛼𝑖 (0) ∈ 𝑖 such that ∀𝑡 ≥ 0

sup
𝑢∈

[

𝜓̇𝑟𝑖−1𝑖 (𝑡, 𝑥, 𝑢, 𝛩𝛼𝑖 ) + 𝛼
𝑟𝑖
𝑖 (𝜓

𝑟𝑖−1
𝑖 (𝑡, 𝑥, 𝛩𝛼𝑖 ))

]

≥ 0. (60)

Note that for 𝛩̇𝛼𝑖 ≡ 0 and 𝛩𝛼𝑖 (0) ≡ 𝛩𝛼𝑖 (a constant independent
of 𝑥(0)), we recover the definition of the classical CBF. In that regard,
RT-CBF is a weaker notion of a classical CBF, which allows for tuning
the response of the system. Note (60) is required to be satisfied for all
𝑡 ≥ 0 and not for all 𝑥 ∈  as required in vanilla CBF (3) and HOCBF
(7) conditions. This difference is essential as we allow for the initial
parameter value 𝛩𝛼𝑖 (0) that is dependent on the initial state 𝑥(0).

Remark 5.1. While several works employ heuristics to tune the param-
eters of the CBF condition (3) so that a solution to the CBF-QP (8) exists
for all 𝑡 > 0 (Garg & Panagou, 2019; Wang, 2022; Zeng, Zhang, Li &
Sreenath, 2021), most of these are equivalent to treating the parameter
𝜈 of a linear class- function 𝛼(ℎ) = 𝜈ℎ as an optimization variable.
However, a formal analysis encompassing all these heuristics and other
possible ways to adapt the class- function has been lacking so far, and
RT-CBFs aim to bridge this gap in theory and application.

In Parwana and Panagou (2023) we show that under mild as-
sumptions (existence and uniqueness of the system trajectories), the
existence of a RT-CBF is a necessary and sufficient condition for safety.
We also show that several existing parameter adaptation schemes (Garg
& Panagou, 2019; Garg, Sanfelice, & Cardenas, 2022; Ma, Zhang,
Tomizuka, & Sreenath, 2022; Parwana & Panagou, 2022; Zeng, Li, &
Sreenath, 2021) fall under the framework of the proposed RT-CBFs.
We then state the following theorem that illustrates how the tuning
of the parameter 𝛩 can be used to shape the response of the CBF-QP
controller.

Theorem 5.2. (Parwana & Panagou, 2023) Consider the system (1), a
first-order candidate barrier function ℎ, a function 𝛼(ℎ, 𝑥) ∶ R × R𝑛 → R
and the following CBF-QP controller with unbounded control input

𝑢𝑄𝑃 = min
𝑢∈R𝑚

‖𝑢 − 𝑢𝑟(𝑡, 𝑥)‖2 (61a)

s.t. ℎ̇(𝑡, 𝑥, 𝑢) ≥ −𝛼(𝑥, ℎ(𝑡, 𝑥)) (61b)

where 𝑢𝑟 ∶ R+ × R𝑛 → is the reference (nominal) control input. Let
+ 𝑛
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𝑢𝑑 (𝑡, 𝑥) ∶ R × R →  be any desired safe response of the system and 𝑐
𝑢𝑟 ≠ 𝑢𝑑 w.l.o.g. Then the following choice of function 𝛼(⋅, ⋅) minimizes the
norm ‖𝑢𝑑 − 𝑢𝑄𝑃 ‖

𝛼(𝑥, ℎ)=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

√

2 𝐿𝑔ℎ
‖𝐿𝑔ℎ‖

(𝑢𝑟−𝑢𝑑 ) if ‖𝐿𝑔ℎ‖ > 0

−𝐿𝑓ℎ − 𝐿𝑔ℎ𝑢𝑟 and 𝐿𝑔ℎ𝑢𝑑 >𝐿𝑔ℎ𝑢𝑟

−𝐿𝑓ℎ − 𝐿𝑔ℎ𝑢𝑟 if ‖𝐿𝑔ℎ‖ = 0

√

2 𝐿𝑔ℎ
‖𝐿𝑔ℎ‖

(𝑢𝑟−𝑢′) if ‖𝐿𝑔ℎ‖ > 0

−𝐿𝑓ℎ − 𝐿𝑔ℎ𝑢𝑟 and 𝐿𝑔ℎ𝑢𝑑 <𝐿𝑔ℎ𝑢𝑟

(62)

where

𝑢′ = 𝑢𝑑 +
1
√

2
𝐿𝑔ℎ

𝑇𝐿𝑔ℎ(𝑢𝑟 − 𝑢𝑑 ). (63)

The result of Theorem 5.2 albeit simple gives us some important
nsights. First, for different desired responses 𝑢𝑑 (such as conservative

or aggressive) at state 𝑥 and time 𝑡, the function 𝛼 can be used to steer
𝑢𝑄𝑃 close to 𝑢𝑑 . Second, to achieve the aforementioned steering, the
function 𝛼 cannot be just a class- of the barrier function ℎ as (62)
depends not only on ℎ but also on 𝑥. In our framework of RT-CBF, the
parameter 𝛩 is a function of 𝑡, 𝑥, ℎ and thus can fulfill this objective at
the points where 𝛼 in (62) is differentiable. We consider the following
RT-CBF-QP controller with parametric class  functions
(RT-CBF-QP)

𝑢 = arg min
𝑢∈

‖𝑢 − 𝑢𝑟‖2 +𝑀𝛿2 (64a)

s.t. 𝑉̇ (𝑡, 𝑥, 𝑢) ≤ −𝑘𝑉 (𝑡, 𝑥) + 𝛿, (64b)

̇ 𝑟𝑖−1𝑖 (𝑡, 𝑥, 𝑢, 𝛩𝛼𝑖 ) + 𝛼
𝑟𝑖
𝑖 (𝜓

𝑟𝑖−1
𝑖 (𝑡, 𝑥, 𝛩𝛼𝑖 )) ≥ 0, (64c)
𝑖 ∈ {1, 2,… , 𝑁}.

While we have established the necessity of RT-CBFs, finding a valid
update law 𝛩̇ for parameters, much like finding a valid CBF in the
sense of (3), is non-trivial. In Parwana and Panagou (2023) we present
some suboptimal and heuristic methods for ensuring that (64) admits a
solution for all time. In the interest of space, we omit the presentation
of the algorithm and present illustrative results.

5.2.2. Simulation results: Adaptive cruise control
We simulate the Adaptive Cruise Control (ACC) problem with a

decelerating leader. Let the ego agent move with velocity 𝑣 and a leader
agent move at velocity 𝑣𝐿 with distance 𝐷 between them. The dynamics
are

⎡

⎢

⎢

⎣

𝑣̇
𝑣̇𝐿
𝐷̇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−1
𝑀 𝐹𝑟(𝑣) +

1
𝑀 𝑢

𝑎𝐿
𝑣𝐿 − 𝑣

⎤

⎥

⎥

⎦

(65)

where 𝑀 denotes the mass of ego agent, 𝐹𝑟(𝑣) is the resistance force
and 𝑎𝐿 is the acceleration of the leader. The safety objective of the
ego agent is to maintain a minimum distance 𝐷̄ with the leader. The
desired velocity is given by 𝑣𝑑 . Additionally, the velocity and control
input are constrained by 𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥, −𝑐𝑀𝑔 ≤ 𝑢 ≤ 𝑐𝑀𝑔, where

is acceleration coefficient and 𝑔 is the acceleration due to gravity.
o ensure safety, we formulate three barrier functions ℎ1 = 𝐷 − 𝐷̄,
2 = 𝑣−𝑣𝑚𝑖𝑛, ℎ3 = 𝑣𝑚𝑎𝑥−𝑣, where ℎ1 is second-order barriers and ℎ2, ℎ3
re first-order barrier. The CLF is chosen as 𝑉 = (𝑣 − 𝑣𝑑 )2. We further
hoose linear class-functions and apply the Algorithm in Parwana and
anagou (2023) to ensure safety.6

The objective of the CBF-QP to ACC is designed in the same way
s (Ames et al., 2017). We compare CBF-QP with RT-CBF-QP in Fig. 10

6 The following parameters are used for the simulation: 𝑀 = 1650 kg,
𝑓0 = 0.1, 𝑓1 = 5, 𝑓2 = 0.25, 𝑔 = 9.81 m∕s2, 𝑣𝑚𝑖𝑗𝑛 = 0, 𝑣𝑚𝑎𝑥 = 0, 𝑣𝑑 = 24 m∕s,
= 0.4, 𝐷̄ = 10.
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Fig. 10. Velocity variation for the ACC problem. The dotted pink line ends when
CBF-QP becomes infeasible. The leader decelerates for the first 10 s and then moves
at constant velocity. The ego-agent approaches the boundary of the safe set and hence
does not have enough bandwidth to steer back towards its desired velocity of 24 m∕s.

Fig. 11. The variation of parameter 𝜈21 with time for the ACC problem. 𝜈1𝑖 starts
increasing as control bounds are approached. It is brought back to its nominal value
of 0.7 eventually.

(for more comparisons please refer to Parwana and Panagou (2023)).
The simulation is run for the same initial parameters in both cases,
for 50 seconds. The CBF-QP (with fixed parameters) becomes infeasible
before the simulation finishes as shown in Fig. 10. The RT-CBF-QP on
the other hand (with adapted parameters) can maintain feasibility and
safety at all times. The variations of 𝜈21 , and 𝑢 with time are shown
in Figs. 11 and 12 respectively. Note that 𝜈21 starts increasing as the
control input bound is approached. Other parameters do not change
in this example and their variation is thus not shown This example
illustrates that, for a chosen barrier function ℎ, the feasibility of CBF-QP
controllers is highly dependent on parameters, but online adaptation
can help circumvent this issue.

6. Prediction: How to reduce myopic behavior?

We review some results that aim to mitigate the ‘‘myopic’’ nature
of CBF-based controllers, i.e., the fact that the control input is optimal
only point-wise and does not consider the system trajectories over a
finite horizon ahead. The notion of a ‘‘future-focused CBF’’ is intro-
duced in Black, Jankovic, et al. (2023) as a solution to the unsignaled
intersection-crossing problem for mixed traffic (communicating and
non-communicating vehicles), so that the vehicles avoid collisions that
are predicted to occur in the future. In the interest of space, we omit
to present this work in detail and refer the interested reader to Black,
Jankovic, et al. (2023). The following section details a predictive
13

𝑥

Fig. 12. The variation of normalized control input with time for the ACC problem.
Normalization is done as 𝑣∕𝑀2.

approach related to Black, Jankovic, et al. (2023) that is applicable to
more general systems.

6.1. Bird’s eye CBFs

In this section, we consider the problems of (A) designing CBFs for
systems for which it is difficult to find a CBF using existing methods,
and (B) designing CBF-based controllers to act more proactively to
maintain safety. To this end, we propose a special form of CBF that we
call a ‘‘bird’s eye CBF’’ (BECBF), introduced in Breeden and Panagou
(2022b). We previously called this a predictive CBF, but we note that
in the broader CBF literature, the term ‘‘predictive CBF’’ is usually
synonymous with ‘‘backup CBF’’, whereas the following work is distinct
from any backup-type formulation, e.g. Breeden and Panagou (2021),
Chen, Jankovic, Santillo, and Ames (2021), Chen, Singletary, and Ames
(2021), Gurriet et al. (2018), Squires et al. (2018), Wabersich and
Zeilinger (2022) and Wiltz et al. (2023).

This form of CBF was specifically developed with the intent of
controlling satellites in Low Earth Orbits. In this environment, a small
control input applied early can have a large effect on the system trajec-
tory over time. However, if the control input is not applied until two
satellites are near collision, then the satellites must apply a very large
control input to alter their trajectories in time to avoid collision. This
sort of ‘‘last-second’’ behavior is undesirable and wastes fuel. Moreover,
in this environment, obstacles may be moving extremely fast, so it is
important to incorporate the future positions of the obstacles into the
CBF formulation. Thus, we sought a control law that could maintain
safety proactively using predictions about the future. The resultant
CBF, while inspired by satellite orbits, is extremely general, and has
proven especially useful in collision avoidance settings, such as the
cars at an intersection also simulated in this section (see also (Black,
Jankovic, et al., 2023) for much more extensive simulations for this
particular application). We call this tool a bird’s eye CBF by analogy
to having a bird’s eye view of the environment and thus being able to
(1) see far away obstacles entering the environment, and (2) choose
avoidance maneuvers that take into account the complete size/shape
of the obstacle instead of just the location of its boundary.

At this point, we emphasize that this subsection is still ongoing
work. While the BECBF design herein works well for the following
simulations, we note that achieving the regularity conditions specified
below is a nontrivial challenge that we are still studying.

In this section, we consider the model

̇ = 𝑓 (𝑡, 𝑥) + 𝑔(𝑡, 𝑥)𝑢 (66)
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Fig. 13. A possible trajectory of 𝜙(𝜏) = ℎ(𝜏, 𝑝(𝜏, 𝑡, 𝑥)) for a specific (𝑡, 𝑥). The trajectory
has one maximizer 𝑴 (red circle), and two roots. 𝑹 is defined as the first root (red
‘‘x’’). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

with time 𝑡 ∈  ⊆ R, state 𝑥 ∈  ⊆ R𝑛, and control 𝑢 ∈  = R𝑚.
Suppose we are given a constraint function ℎ ∶  × → R and safe set

(𝑡) = {𝑥 ∈  ∣ ℎ(𝑡, 𝑥)} ≤ 0 (67)

Similar to Section 4, our goal is to find a CBF 𝐻 ∶  × → R and a CBF
set 𝐻 = {𝑥 ∈  ∣ 𝐻(𝑡, 𝑥) ≤ 0}. The CBF that we design will be based
on finite time predictions and thus might be non-differentiable when
the ‘‘time-of-interest’’ in this horizon switches from an endpoint of this
horizon to the interior of this horizon. Thus, we relax the definition of
CBF to absolutely continuous functions.

Definition 6.1 (CBF (Absolutely Continuous)). An absolutely continuous
function 𝜑 ∶  ×  → R, denoted 𝜑(𝑡, 𝑥), is a control barrier function
(CBF) if there exists 𝛼 ∈  (not necessarily locally Lipschitz continuous)
such that

inf
𝑢∈R𝑚

[

𝜕𝑡𝜑(𝑡, 𝑥) + 𝐿𝑓 (𝑡,𝑥)+𝑔(𝑡,𝑥)𝑢𝜑(𝑡, 𝑥)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 𝑑
𝑑𝑡 [𝜑(𝑡,𝑥)]

]

≤ 𝛼(−𝜑(𝑡, 𝑥)) , (68)

for almost every 𝑥 ∈ 𝜑(𝑡), 𝑡 ∈  , where 𝜑(𝑡) ≜ {𝑥 ∈  ∣ 𝜑(𝑡, 𝑥) ≤ 0} .

6.1.1. CBF construction
To construct the BECBF, suppose that we are given a nominal

control input 𝜇 ∶  ×  →  . This can be any control law, and does
not need to be ‘‘safety-encouraging’’ as is required for the backup CBF.
We assign the hypothetical flow of the system according to this control
input to the function 𝑝 ∶  ×  ×  →  satisfying
𝜕𝑝(𝜏, 𝑡, 𝑥)

𝜕𝜏
= 𝑓 (𝜏, 𝑝(𝜏, 𝑡, 𝑥)) + 𝑔(𝜏, 𝑝(𝜏, 𝑡, 𝑥))𝜇(𝜏, 𝑝(𝜏, 𝑡, 𝑥)) ,

𝑝(𝑡, 𝑡, 𝑥) = 𝑥 . (69)

We call 𝑝 the path function; 𝑝 encodes the predicted future trajectories
of the system from any initial state. Assume that 𝑝 is continuously
differentiable. The idea of the BECBF is to use the path function to
analyze whether the nominal control law 𝜇 is safe in the future, and
if not, then to use the sensitivities (i.e. derivatives) of 𝑝 to choose a
control input 𝑢 ≠ 𝜇 that is safe, i.e. a control input that leads to forward
invariance of some subset 𝐻 ⊂ .

To perform this analysis, for some (𝑡, 𝑥), consider the curve 𝜙(𝜏) =
ℎ(𝜏, 𝑝(𝜏, 𝑡, 𝑥)) containing the future values of ℎ along the path function
for 𝜏 ∈ [𝑡, 𝑡 + 𝑇 ] for some fixed 𝑇 ∈ R>0. We are interested in two
‘‘points-of-interest’’ along 𝜙: (1) the maximum value of 𝜙 over [𝑡, 𝑡+𝑇 ],
and (2) the time at which 𝜙 first exceeds zero (i.e. the first root). For
simplicity, assume that 𝜙 has a unique maximizer and no more than
two roots, as shown in Fig. 13. Then define the quantities

𝑲(𝑡, 𝑥) = max
𝜏∈[𝑡,𝑡+𝑇 ]

ℎ(𝜏, 𝑝(𝜏, 𝑡, 𝑥)) , (70)

𝑴(𝑡, 𝑥) = arg maxℎ(𝜏, 𝑝(𝜏, 𝑡, 𝑥)) , (71)
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𝜏∈[𝑡,𝑡+𝑇 ]
𝑹(𝑡, 𝑥) =

⎧

⎪

⎨

⎪

⎩

min
{𝜏∈[𝑡,𝑡+𝑇 ]∣ℎ(𝜏,𝑝(𝜏,𝑡,𝑥))=0}

𝜏 𝑲(𝑡, 𝑥) ≥ 0

𝑴(𝑡, 𝑥) 𝑲(𝑡, 𝑥) < 0
. (72)

That is, 𝑲 is the maximum of 𝜙 over [𝑡, 𝑡 + 𝑇 ], and 𝑴 is the time at
which 𝑲 occurs (which was assumed to be unique). If 𝑲 ≥ 0, then 𝑹
is the first root of the curve 𝜙, and otherwise, 𝑹 is equal to 𝑴 . We
note that the original paper (Breeden & Panagou, 2022b) considered a
wider set of possible curves 𝜙, including curves with several maximizers
and/or maximizer intervals. However, we do not cover those cases
here (1) to encourage simplicity, and (2) because these more general
trajectories are likely to conflict with the assumed regularity conditions
of Theorem 6.1.

Using (70)–(72), we then define the BECBF as the sum of the
maximal (i.e. worst point) safety metric along the predicted trajectory
and a relaxation function 𝛽 of the time until the safety metric first
becomes positive (i.e. unsafe), if ever. Let 𝛽 ∶ R≥0 → R≥0 be a class-
function, and then choose

𝐻(𝑡, 𝑥) = 𝑲(𝑡, 𝑥) − 𝛽(𝑹(𝑡, 𝑥) − 𝑡) . (73)

Intuitively, (73) says that a state (𝑡, 𝑥) belongs to 𝐻 if the time at which
the hypothetical trajectory 𝑝 first becomes unsafe is sufficiently far in
the future, as measured by 𝛽, that we can adjust the value of 𝑲 before
the system reaches any unsafe states. As such, the selection of 𝛽 will
substantially impact the size of 𝐻 and the amount of control effort
utilized to correct the trajectory, as well as how early this control effort
is applied.

The main results of Breeden and Panagou (2022b) are then as
follows.

Lemma 6.1 (Zero Sublevel Set of 𝐻). For some constraint function ℎ ∶
 ×  → R, let  be as in (86) and 𝐻 as in (73) with 𝐻 ≜ {𝑥 ∈  ∣
𝐻(𝑡, 𝑥) ≤ 0}. Then 𝐻 (𝑡) ⊆ (𝑡),∀𝑡 ∈  .

Theorem 6.1 (𝐻 is a CBF). Let the derivative 𝛽′ ∶ R≥0 → R≥0 of 𝛽 in (73)
be strictly positive on (0, 𝑇 ). Assume that 𝐻 in (73) is absolutely continuous,
and further assume that 𝑴 in (71) is continuously differentiable whenever
𝑴(𝑡, 𝑥) ∈ (𝑡, 𝑡 + 𝑇 ). Let  = R𝑚. Suppose that there exists 𝛾 such that
𝑑
𝑑𝜏 [𝜙(𝜏)] ≡ 𝑑

𝑑𝜏 [ℎ(𝜏, 𝑝(𝜏; 𝑡, 𝑥))] ≤ 𝛾 for all 𝜏 ∈  , 𝑡 ∈  , 𝑥 ∈  . Suppose
also that ‖ 𝜕ℎ(𝜂,𝑝(𝜂;𝑡,𝑥))𝜕𝑥

𝜕𝑝(𝜂;𝑡,𝑥)
𝜕𝑥 𝑔(𝑡, 𝑥)‖ ≠ 0 for all 𝜂 ∈ (𝑡, 𝑡 + 𝑇 ) ⧵𝑴(𝑡, 𝑥) and

for all 𝑡 ∈  , 𝑥 ∈  , and that 𝜕ℎ(𝑴 ,𝑝(𝑴 ;𝑡,𝑥))
𝜕𝑥

T 𝜕ℎ(𝑹,𝑝(𝑹;𝑡,𝑥))
𝜕𝑥 ≥ 0 whenever

𝑹(𝑡, 𝑥) ≠ 𝑴(𝑡, 𝑥) and for all 𝑡 ∈  , 𝑥 ∈  . Then 𝐻 in (73) is a CBF as in
Definition 6.1.

That is, under mild assumptions, the function 𝐻 in (73) is indeed a
CBF, and its zero sublevel set 𝐻 is a subset of the constraint set . In
brief, the assumptions of Theorem 6.1 are (1) the slope of 𝜙 is bounded,
(2) the trajectories encoded in 𝑝 have non-zero sensitivity to the initial
state (i.e. the system is controllable), and (3) the sensitivities of 𝑝
satisfy a consistency condition so that decreasing 𝑲 does not cause 𝑹 to
occur sooner. See Breeden and Panagou (2022b) for further discussion.
We also assume that  is equivalent to R𝑚, though in practice, the
function 𝛽 can be tuned to achieve input constraint satisfaction. This
is a powerful theorem because it implies the form (73) can be applied
to any system and any constraint function of any relative degree. It is
also advantageous in practice, as will be clear in the simulations.

Next, we provide two lemmas on how to compute the deriva-
tives of the BECBF (73). In these lemmas, the notation 𝜕𝑝(𝑎,𝑏,𝑐)

𝜕𝜆𝑥
means

𝜕𝑝(𝜏,𝑡,𝑥)
𝜕𝑥

|

|

|(𝜏,𝑡,𝑥)=(𝑎,𝑏,𝑐)
.

Lemma 6.2 (Derivative of 𝑲). For some (𝑡, 𝑥) ∈  ×  , suppose that
ℎ in (67) is continuously differentiable in a neighborhood of 𝑴(𝑡, 𝑥) and
𝑝∗ = 𝑝(𝑴(𝑡, 𝑥), 𝑡, 𝑥). Assume that 𝑴 in (71) is Lipschitz continuous. Let 𝜙′

be the derivative 𝑑
𝑑𝜏 [𝜙(𝜏)] of 𝜙(𝜏) = ℎ(𝜏, 𝑝(𝜏, 𝑡, 𝑥)). Then

𝑑𝑲(𝑡, 𝑥)
=
𝜕ℎ(𝑴 , 𝑝∗) 𝜕𝑝(𝑴 , 𝑡, 𝑥)

𝑔(𝑡, 𝑥)(𝑢 − 𝜇(𝑡, 𝑥))

𝑑𝑡 𝜕𝜆𝑥 𝜕𝜆𝑥
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{ 𝜕ℎ(𝑴 ,𝑝∗)
𝜕𝜆𝑡

+ 𝜕ℎ(𝑴 ,𝑝∗)
𝜕𝜆𝑥

𝜙′(𝑴) 𝑴 ∈ {𝑡, 𝑡 + 𝑇 }

0 𝑴 ∈ (𝑡, 𝑡 + 𝑇 )
(74)

emma 6.3 (Derivative of 𝑹). For some (𝑡, 𝑥) ∈  ×  , suppose that
(𝑡, 𝑥) ≠ 𝑴(𝑡, 𝑥) and that ℎ is continuously differentiable in a neighborhood

f 𝑹(𝑡, 𝑥) and 𝑝◦ = 𝑝(𝑹(𝑡, 𝑥), 𝑡, 𝑥). Let 𝜙′ be the derivative 𝑑
𝑑𝜏 [𝜙(𝜏)] of

(𝜏) = ℎ(𝜏, 𝑝(𝜏, 𝑡, 𝑥)). Then
𝑑𝑹(𝑡, 𝑥)
𝑑𝑡

= 1
−𝜙′(𝑹)

𝜕ℎ(𝑹, 𝑝◦)
𝜕𝜆𝑥

𝜕𝑝(𝑹, 𝑡, 𝑥)
𝜕𝜆𝑥

𝑔(𝑡, 𝑥)(𝑢 − 𝜇(𝑡, 𝑥)) (75)

That is, while we could compute the derivatives of 𝐻 in (73) numer-
ically (which would require recomputing 𝑲 , 𝑴 , and 𝑹 at least 𝑛 times),

e also have explicit expressions for the derivatives of 𝐻 in terms of
he derivatives of ℎ and 𝑝. Moreover, these derivatives are zero if 𝑢 = 𝜇
nd 𝑴 is not an endpoint. Unfortunately, the expression for 𝑑𝑹

𝑑𝑡 in the
case of 𝑹 = 𝑴 is prohibitively complex, so this should be computed
numerically. Note that if 𝑴(𝑡, 𝑥) is continuously differentiable at 𝑥, then

𝑑𝑴(𝑡, 𝑥)
𝑑𝑡

=
𝜕𝑴(𝑡, 𝑥)
𝜕𝜆𝑥

𝑔(𝑡, 𝑥)(𝑢 − 𝜇(𝑡, 𝑥)) (76)

has the same structure as (74)–(75), where 𝜕𝑴
𝜕𝜆𝑥

is instead computed
numerically. One can also replace 𝑹 − 𝑡 in (73) with the current safety

etric ℎ, as was done in Black, Jankovic, et al. (2023, Eq. 22). This
esults in simpler derivative expressions than (74)–(75), but is less
pplicable to the satellite scenario for which this was intended.

.1.2. Simulations
To demonstrate the advantages of the BECBF over conventional

BFs, we consider two case studies. Our first case study involves two
ars passing through a four-way intersection. We assume that the cars
re fixed in their lanes 𝑙1 ∶ R → R2 and 𝑙2 ∶ R → R2, respectively, with
ocations 𝑧1 ∈ R and 𝑧2 ∈ R along their lanes. Thus, the position of
ar 1 on the road is 𝑙1(𝑧1) ∈ R2 and the position of car 2 is 𝑙2(𝑧2) ∈ R2.
or simplicity, we model the cars as double-integrators: 𝑧̈1 = 𝑢1 and
𝑧̈2 = 𝑢2, resulting in state vector 𝑥 = [𝑧1; 𝑧̇1; 𝑧2; 𝑧̇2] and control vector
𝑢 = [𝑢1; 𝑢2]. Suppose the cars nominally want to travel in their lanes
at velocities 𝑣1 and 𝑣2, respectively, so the nominal control input is
𝜇 = [𝜇1;𝜇2] where 𝜇𝑖(𝑡, 𝑥) = 𝑘(𝑣𝑖 − 𝑧̇𝑖) for some gain 𝑘 > 0. The path
function is then 𝑝 = [𝑝1; 𝑝2] where 𝑝𝑖 is the solution to (69) under 𝜇. The
function 𝑝 is computed explicitly here, though we note that numerical
solutions to (69) are also fine.

𝑝𝑖(𝜏; 𝑡, 𝑥) =

[

𝑧𝑖 + 𝑣𝑖(𝜏 − 𝑡) +
𝑧̇𝑖−𝑣𝑖
𝑘 (1 − 𝑒−𝑘(𝜏−𝑡))

𝑣𝑖 + (𝑧̇𝑖 − 𝑣𝑖)𝑒−𝑘(𝜏−𝑡)

]

. (77)

Let the safety constraint be ℎ = 𝜌 − ‖𝑙1(𝑧1) − 𝑙2(𝑧2)‖.
This system meets all the assumptions of Theorem 6.1. The system

also meets the assumptions of the formulas (74)–(76), except on the
critical manifolds 𝑙1(𝑝∗1) = 𝑙2(𝑝∗2) (where ℎ is not continuously differen-
tiable) and 𝑲(𝑡, 𝑥) = 0 (where (72) switches cases). These manifolds are
of Lebesgue measure zero and can be ignored, so it is straightforward
to apply the CBF 𝐻 in (73) in a QP

𝑢 = arg min
𝑢∈R2

‖𝑢 − 𝜇(𝑡, 𝑥)‖2 s.t. 𝑑𝐻(𝑡, 𝑥)
𝑑𝑡

≤ 𝛼(−𝐻(𝑥)) . (78)

Note that this is a centralized control law since 𝑢1 and 𝑢2 are computed
simultaneously.

We then simulated two cars approaching an intersection with the
control law (78), with the same control law with an ECBF (Nguyen
& Sreenath, 2016) in place of the BECBF, and with a nonlinear MPC
control law. The results are best demonstrated by the video https:
//youtu.be/0tVUAX6MCno, and the safety function values are shown
in Fig. 14. The BECBF and MPC cases performed generally similarly,
with both cars approaching close and then continuing on opposite sides
of the intersection. On the other hand, the ECBF caused both agents
to come to a complete stop, so neither agent made it through the
15
Fig. 14. The values of ℎ during the three simulations. The BECBF and MPC trajectories
are similar, whereas the ECBF trajectory slowly converges to zero as the vehicles come
to a complete stop.

Fig. 15. This shows a possible predicted trajectory through a static obstacle (red zone).
A conventional CBF like the ECBF has a gradient vector pointing from the current agent
position to the center of the obstacle as in the blue vector. By contrast, the BECBF
gradient is the green vector, which takes into account the entire obstacle instead of
just the closest point. This is why we call (73) a ‘‘bird’s eye CBF’’. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

intersection. On average, the control computation time was 0.0011 s
for the ECBF, 0.0061 s for the BECBF, and 0.40 s for the MPC approach,
all in MATLAB on a 3.5 GHz CPU, though the code for all three cases
could likely be further optimized. For more information and simulation
code, see Breeden and Panagou (2022b).

Thus, the BECBF achieved similar performance to the nonlinear
MPC with substantially reduced computation time. This was possible
because the BECBF only performs one prediction of 𝜙 per control cycle
and only varies the current control input, whereas MPC varies all the
states and control inputs within a horizon. Compared to the ECBF, the
QP with BECBF chooses the control input that most encourages safety
at the moment where the two cars are closest together—in this case,
that means one car decelerating and one car accelerating so that the
cars are never too close together. By contrast, the QP with ECBF always
chooses the control that most encourages safety at the present—in this
case, that means applying a control input that is opposite the present
direction of the other car (and constrained to be along the lanes 𝑙1 and
𝑙2), which is a deceleration for both cars. The differences between these
directions for a static obstacle is illustrated in Fig. 15.

Next, we consider the case study of satellites in low earth orbit
with state 𝑥 = [𝑟T 𝑟̇T]T ∈ R6 and dynamics 𝑟̈ = − 𝜇𝑟

‖𝑟‖3
+ 𝑢. In this

example, 𝜇 = 3.986(10)14 is very large (much larger than the example
in Section 4), so the uncontrolled term of r̈ will always be much larger
than 𝑢 and the system state will evolve rapidly. This means that (1)
conventional approaches like the ECBF or Theorem 4.1 will not work
very well, and (2) a small control input will have a large effect on
system trajectories over time.

Let ℎ(𝑡, 𝑥) = 𝜌 − ‖𝑟 − 𝑟𝑜(𝑡)‖ where 𝜌 = 1000 and 𝑟𝑜 is the location
of an uncontrolled piece of debris. Let 𝜇 = 0, so the satellite nom-
inally applies no control input, unless 𝑢 ≠ 0 is necessary to ensure
safety. Our simulation scenario places the controlled satellite and the
debris initially very far apart, but in orbits that eventually intersect

if no control action is taken. Simulations under the BECBF, under

https://youtu.be/0tVUAX6MCno
https://youtu.be/0tVUAX6MCno
https://youtu.be/0tVUAX6MCno
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Fig. 16. Control thrusts of a satellite with safety determined by an ECBF or BECBF.

Fig. 17. The values of ℎ during the two simulations in Fig. 16 and a simulation with
zero control input. The BECBF minimally modifies the original trajectory so the red
and blue lines are very similar, but the red line exceeds the safe set by 1000 m (see
zoomed-in inset or the animation), while the blue and green lines remain safe. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

an ECBF, and under no control action are shown in Figs. 16–17 and
in the video https://youtu.be/HhtWUG63BWY. Note how the BECBF
trajectory (blue) takes a small control action as soon as the unsafe
prediction enters the horizon at 𝑡 = 367 s and then is very similar to
the nominal trajectory (red). On the other hand, the ECBF trajectory
(green) takes control action much later, when over 10 times as much
thrust is required. This avoidance problem could in theory also be
solved with MPC but would require a very fine discretization because
ℎ > 0 occurs for only 0.14 s since the satellites are moving so fast. Thus,
utilizing the same length of prediction horizon would require more than
104 samples, making the MPC problem intractable.

Thus, in addition to choosing a better control direction than the
ECBF, the BECBF also provides a mechanism for tuning how early
we want the system to detect and respond to predicted collisions.
The BECBF is also able to take into account the future locations of
time-varying obstacles with known paths rather than just their current
positions. Thus, the BECBF can make use of paths like satellite orbits,
and in the cars example, the BECBF can take into account whether
each car intends to continue straight or turn. Note that both of these
examples included fairly simple path functions, where the controlled
agents were always in motion so that 𝜙 had a strictly negative hessian,
and thus 𝑲 , 𝑴 , and 𝑹 were always well-defined and differentiable. In
he future, we seek to consider more general paths that may challenge
he regularity assumptions presently made.

. Practical challenges: Output feedback control and sampled-
ata control with control barrier functions

.1. Output feedback control

Synthesizing safe controllers for nonlinear systems using output
eedback can be a challenging task, since observers and controllers de-
igned independently of each other may not render the system safe. In
ur recent work (Agrawal & Panagou, 2022) we present two observer-
ontroller interconnections that ensure that the trajectories of a non-
inear system remain safe despite bounded disturbances on the system
ynamics and partial state information. The first approach utilizes
nput-to-State Stable observers, and the second uses Bounded Error
16

a

observers. Using the stability and boundedness properties of the obser-
vation error, we construct novel Control Barrier Functions that impose
inequality constraints on the control inputs which, when satisfied,
certify safety. We propose quadratic program-based controllers to sat-
isfy these constraints and prove Lipschitz continuity of the derived
controllers.

7.1.1. Tunable-robust CBFs
We consider nonlinear control-affine systems of the form:

𝑥̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑔𝑑 (𝑥)𝑑(𝑡), (79a)

𝑦 = 𝑐(𝑥) + 𝑐𝑑 (𝑥)𝑣(𝑡), (79b)

here 𝑥 ∈  ⊂ R𝑛 is the system state, 𝑢 ∈  ⊂ R𝑚 is the control
nput, 𝑦 ∈ R𝑛𝑦 is the measured output, 𝑑 ∶ R+ → R𝑛𝑑 is a disturbance
n the system dynamics, and 𝑣 ∶ R+ → R𝑛𝑣 is the measurement
isturbance. We assume 𝑑 and 𝑣 are piecewise continuous, bounded
isturbances, sup𝑡 ‖𝑑(𝑡)‖∞ = 𝑑 and ‖𝑣(𝑡)‖∞ ≤ 𝑣̄ for some known 𝑑, 𝑣̄ <
. The functions 𝑓 ∶  → R𝑛, 𝑔 ∶  → R𝑛×𝑚, 𝑐 ∶  → R𝑛𝑦 ,
𝑑 ∶  → R𝑛×𝑛𝑑 , and 𝑐𝑑 ∶  → R𝑛𝑦×𝑛𝑣 are all assumed to be locally
ipschitz continuous. Notice that 𝑔𝑑 (𝑥)𝑑(𝑡) accounts for either matched
r unmatched disturbances.

We seek to establish observer-controller interconnections of the
orm:

̇̂ = 𝑝(𝑥̂, 𝑦) + 𝑞(𝑥̂, 𝑦)𝑢, (80a)

𝑢 = 𝜋(𝑡, 𝑥̂, 𝑦), (80b)

here 𝑝 ∶  × R𝑛𝑦 → R𝑛, 𝑞 ∶  × R𝑛𝑦 → R𝑛×𝑚 are locally Lipschitz
n both arguments. The feedback controller 𝜋 ∶ R+ ×  × R𝑝 → 
s assumed piecewise-continuous in 𝑡 and Lipschitz continuous in the
ther two arguments. Then, the closed-loop system formed by ((79),
80)) is

𝑥̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑔𝑑 (𝑥)𝑑(𝑡), (81a)
̇̂𝑥 = 𝑝(𝑥̂, 𝑦) + 𝑞(𝑥̂, 𝑦)𝑢, (81b)

(0) = 𝑥0, 𝑥̂(0) = 𝑥̂0, (81c)

here 𝑦 and 𝑢 are defined in (79b) and (80b) respectively. Under
he stated assumptions, there exists an interval  = (𝑥0, 𝑥̂0) =
0, 𝑡𝑚𝑎𝑥(𝑥0, 𝑥̂0)) over which solutions to the closed-loop system exist and
re unique (Khalil, 2002, Thm 3.1).

Safety is defined as the true state of the system remaining within a
afe set,  ⊂  , for all times 𝑡 ∈ , where the safe set  is defined as
he super-level set of a continuously-differentiable function ℎ ∶  → R
s in (2).

A state-feedback controller,7 𝜋 ∶ + ×  →  renders system (79)
afe with respect to the set , if for the closed-loop dynamics 𝑥̇ =
(𝑥) + 𝑔(𝑥)𝜋(𝑡, 𝑥) + 𝑔𝑑 (𝑥)𝑑(𝑡), the set  is forward invariant i.e., 𝑥(0) ∈
⟹ 𝑥(𝑡) ∈  ∀𝑡 ∈ . In output-feedback, we define safety as follows:

efinition 7.1. An observer-controller pair (80) renders system (79)
afe with respect to a set  ⊂  from the initial condition sets 0, ̂0 ⊂

if for the closed-loop system (81) it holds that 𝑥(0) ∈ 0 and 𝑥̂(0) ∈
̂0 ⟹ 𝑥(𝑡) ∈  ∀𝑡 ∈ .

Now, inspired by Alan et al. (2021) and Jankovic (2018), we define
he following CBF to account for disturbances and measurement noise.

efinition 7.2. A continuously differentiable function ℎ ∶  → R is a
unable Robust CBF (TR-CBF) for system (79) if there exists a class 

7 In state-feedback the control input is determined from the true state,
= 𝜋(𝑡, 𝑥). In estimate-feedback the input is determined from the state estimate
nd measurements, 𝑢 = 𝜋(𝑡, 𝑥̂, 𝑦).

https://youtu.be/HhtWUG63BWY
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𝑢

function 𝛼, and a continuous, non-increasing function 𝜅 ∶ R+ → R with
(0) = 1, s.t.

sup
∈

𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛼(ℎ(𝑥))

≥ 𝜅(ℎ(𝑥))‖𝐿𝑔𝑑ℎ(𝑥)‖𝑑, ∀𝑥 ∈  . (82)

Examples include 𝜅(𝑟) = 1 and 𝜅(𝑟) = 2∕(1+ exp(𝑟)). Given a TR-CBF
ℎ for (79), the set of safe control inputs is

𝐾𝑡𝑟𝑐𝑏𝑓 (𝑥) = {𝑢 ∈  ∶ 𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢−

𝜅(ℎ(𝑥))‖𝐿𝑔𝑑ℎ(𝑥)‖𝑑 ≥ −𝛼(ℎ(𝑥))}, (83)

and a safe state-feedback controller is obtained by solving a QP, as
in Jankovic (2018, Eq. 30). The main question is:

Problem 7.1. Given a system (79) with disturbances of known bounds
‖𝑑(𝑡)‖∞ ≤ 𝑑, ‖𝑣(𝑡)‖∞ ≤ 𝑣̄, and a safe set  defined by (2), synthesize
an interconnected observer-controller (80) and the initial condition sets
0, ̂0 to render the system safe.

7.1.2. Observer-controller interconnection
We review Approach 2 of our work in Agrawal et al. (2022), where

we consider the class of Bounded-Error Observers:

Definition 7.3. An observer (80a) is a Bounded-Error (BE) Observer, if
there exists a bounded set (𝑥̂0) ⊂  and a (potentially) time-varying
bounded set (𝑡, 𝑥̂) ⊂  s.t. 𝑥0 ∈ (𝑥̂0) ⟹ 𝑥(𝑡) ∈ (𝑡, 𝑥̂) ∀𝑡 ∈ .

The idea is to find a common, safe input for all 𝑥 ∈ (𝑡, 𝑥̂):

Theorem 7.1. For system (79), suppose the observer (80a) is a Bounded-
Error observer. Suppose the safe set  is defined by a continuously differen-
tiable function ℎ ∶  → R, where ℎ is a Tunable Robust-CBF for the system.
Suppose 𝜋 ∶ R+ ×  →  is an estimate-feedback controller, piecewise-
continuous in the first argument and Lipschitz continuous in the second, s.t.

𝜋(𝑡, 𝑥̂) ∈
⋂

𝑥∈(𝑡,𝑥̂)
𝐾𝑡𝑟𝑐𝑏𝑓 (𝑥), (84)

where 𝐾𝑡𝑟𝑐𝑏𝑓 is defined in (83). Then the observer-controller renders the
system safe from the initial-condition sets 𝑥(0) ∈ 0 = (𝑥̂0) and 𝑥̂0 ∈
̂0 = {𝑥̂ ∶ (0, 𝑥̂0) ⊂ }.

In general, designing a controller satisfying (84) can be difficult.
Under certain assumptions, one can define certain forms of a Quadratic
Program that defines a controller that meets the desired properties. In
the interest of space, we refer the reader to Agrawal et al. (2022) for
the details, and we directly present some experimental results of the
safe observer-controller interconnection. The objective for a quadrotor
is to fly in a ‘‘figure of eight’’ trajectory and not crash into a physical
barrier placed at 𝑥 = 0.5 meters. An Extended Kalman Filter is used as
the bounded error observer. To design the controller, first 𝜋𝑑𝑒𝑠(𝑡, 𝑥̂) is
computed using an LQR controller, which computes desired accelera-
tions with respect to an inertial frame to track the desired trajectory.
This command is filtered using a safety-critical QP, either the baseline
CBF-QP (Fig. 18a) or the proposed QP using Approach 2 (Fig. 18c). The
trajectories from the two flight controllers are compared in Fig. 18. In
the baseline controller, the quadrotor slows down as it approaches the
barrier, but still crashes into barrier. In the proposed controller, the
quadrotor remains safe, Fig. 18e.

7.2. Zero-order hold (ZOH) control

In this section, we consider one of the major challenges that
continuous-time CBF-based controllers (such as those derived in the
previous sections) face in practice, namely that physical systems evolve
in continuous time, under control inputs that are implemented at
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discrete time instances, such as zero-order-hold (ZOH) controllers with
fixed time-step. One can easily construct counter-examples showing
that the control laws developed from the CBF condition in Ames et al.
(2017) and Wang, Ames, and Egerstedt (2017) are no longer safe
when the controller is executed in discrete steps. On the other hand, a
controller implemented under discrete-time CBFs (Agrawal & Sreenath,
2017; Blanchini, 1999) may not satisfy the continuous safety condition
between time steps (Yang, Belta, & Tron, 2020).

In our paper (Breeden, Garg, & Panagou, 2022) we study conditions
for forward invariance of safe sets under ZOH controllers. We define
two types of margins, the controller margin and the physical margin,
to compare the conservatism of the conditions developed. In Breeden
et al. (2022), we present extensions to the approaches in Cortez,
Oetomo, Manzie, and Choong (2021b), Singletary, Chen, and Ames
(2020) and Usevitch and Panagou (2021) that reduce conservatism as
measured by these margins, while similarly relying on proving that the
continuous-time CBF condition is always satisfied. We also present a
novel condition inspired instead by discrete-time set invariance condi-
tions, and compare the conservatism of all the approaches studied using
the above margins. For brevity, we only present the prior state-of-the-
art and this last approach here, and we refer the reader to Breeden et al.
(2022) for details about the other approaches. We also build upon the
following approach further in Breeden and Panagou (2023a).

7.2.1. Problem formulation
We consider the system

𝑥̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 , (85)

with state 𝑥 ∈ R𝑛, control input 𝑢 ∈ 𝑈 ⊂ R𝑚 where 𝑈 is compact, and
locally Lipschitz continuous functions 𝑓 ∶ R𝑛 → R𝑛 and 𝑔 ∶ R𝑛 → R𝑛×𝑚.
Define 𝑢max ≜ max𝑢∈𝑈 ‖𝑢‖. Let ℎ ∶ R𝑛 → R where ℎ is continuously
differentiable with locally Lipschitz gradient, and define a safe set 𝑆 as

𝑆 ≜ {𝑥 ∈ R𝑛 ∣ ℎ(𝑥) ≤ 0} . (86)

For a continuous control law 𝑢(𝑥), Theorem 2.1 (with the adjusted
sign of the CBF) can be used for guaranteeing safety of dynamical
systems. To apply Theorem 2.1, we must ensure (4) (with the inequality
reversed) is satisfied along 𝑥(𝑡) for all 𝑡 ≥ 0. However, suppose instead
that the state 𝑥 is only measured discretely (and thus the control policy
𝑢(𝑥) is updated in a discrete fashion too) at times 𝑡𝑘 = 𝑘𝑇 , 𝑘 = 0, 1, 2,…
for a fixed time-step 𝑇 ∈ R>0. Consider a ZOH control law8

𝑢(𝑡) = 𝑢𝑘, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) , (87)

where 𝑢𝑘 = 𝑢𝑘(𝑥𝑘) ∈ 𝑈 and 𝑥𝑘 = 𝑥(𝑡𝑘), ∀𝑘 ∈ N. Satisfaction of (4)
only discretely is not sufficient for safety per Theorem 2.1. Thus, we
seek a condition similar to (4) under which safety can be guaranteed
when the control input is updated only at discrete times. We consider
the following problem.

Problem 7.2. Design a function 𝜙 ∶ R>0 × R𝑛 → R such that any
bounded, piecewise-constant control input 𝑢 ∈ 𝑈 of the form (87)
satisfying

𝐿𝑓ℎ(𝑥𝑘) + 𝐿𝑔ℎ(𝑥𝑘)𝑢𝑘 ≤ 𝜙(𝑇 , 𝑥𝑘), (88)

at the sampled states 𝑥𝑘 = 𝑥(𝑘𝑇 ), 𝑘 ∈ N renders 𝑆 forward invariant
along the closed-loop trajectories of (85).

We call (88) the ZOH-CBF condition. The following result, adapted
from (Cortez et al., 2021b), provides one form of the function 𝜙 that
solves Problem 7.2 (see also (Usevitch & Panagou, 2021)).

8 Under 𝑢 as in (87) for a compact set 𝑈 , uniqueness of the maximal
closed-loop solution 𝑥(𝑡) (and hence 𝑥𝑘) is guaranteed by Sontag (1998, Thm.
54).
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Fig. 18. Experimental results. The quadrotor is commanded to track a figure-of-eight trajectory while avoiding the physical barrier at 𝑥 = 0.5 m. Ground truth trajectories are
plotted in (a, c) for the baseline CBF and proposed controllers respectively. Snapshots from the experiment are shown in (b, d). (e, f) Plots of the safety value, ℎ over time for
both trajectories. Video: https://www.youtube.com/watch?v=83o7CEgTEwo.
Lemma 7.1 ((Cortez et al., 2021b, Thm. 2)). Let the set 𝑆 in (86) be
compact and 𝛼 ∈  be locally Lipschitz continuous. Let 𝑙𝐿𝑓 ℎ, 𝑙𝐿𝑔ℎ, 𝑙𝛼(ℎ) be
the Lipschitz constants of 𝐿𝑓ℎ,𝐿𝑔ℎ, 𝛼(−ℎ), respectively. Then the function
𝜙𝑔0 ∶ R>0 × R𝑛, defined as

𝜙𝑔0(𝑇 , 𝑥) ≜ 𝛼(−ℎ(𝑥)) −
𝑙1𝛥
𝑙2

(

𝑒𝑙2𝑇 − 1
)

, (89)

solves Problem 7.2, where 𝑙1 = 𝑙𝐿𝑓 ℎ + 𝑙𝐿𝑔ℎ𝑢max + 𝑙𝛼(ℎ), 𝑙2 = 𝑙𝐿𝑓 ℎ + 𝑙𝐿𝑔ℎ𝑢max,
and 𝛥 = sup𝑥∈𝑆,𝑢∈𝑈 ‖𝑓 (𝑥) + 𝑔(𝑥)𝑢‖.

In practice, the form of the function 𝜙𝑔0 in (89) is conservative in
the sense that many safe trajectories may fail to satisfy (88) for 𝜙 = 𝜙𝑔0 .
To overcome this limitation, we define two metrics to quantify the
conservatism of the solutions to 7.2 and then develop novel solutions
to Problem 7.2 that are less conservative compared to (89).

7.2.2. Comparison metrics
In this work, we consider functions 𝜙 of the form:

𝜙(𝑇 , 𝑥) = 𝛼(−ℎ(𝑥)) − 𝜈(𝑇 , 𝑥) , (90)

where 𝛼 is a class- function that vanishes as ℎ(𝑥) → 0, and 𝜈 ∶
R>0 × R𝑛 → R is a function of the discretization time-step 𝑇 and the
state 𝑥 that does not explicitly depend on ℎ. This motivates our first
metric of comparison, defined as follows.

Definition 7.4 (Controller margin). The function 𝜈 in (90) is called the
controller margin.

Note that 𝜈 is the difference between the right-hand sides of condi-
tions (4) and (88), and is a bound on the discretization error that could
occur between time steps. At a given state 𝑥 ∈ 𝑆, a larger controller
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margin will necessitate a larger control input to satisfy (88) (hence, the
name ‘‘controller margin’’). A sufficiently large controller margin might
also necessitate inadmissible control inputs, and thus make a CBF no
longer applicable to a system. Thus, it is desired to design functions 𝜙
whose controller margins are small. For a given 𝑇 , we call a solution 𝜙𝑎
less conservative than 𝜙𝑏 if the controller margins of 𝜙𝑎 and 𝜙𝑏 satisfy
𝜈𝑎(𝑇 , 𝑥) ≤ 𝜈𝑏(𝑇 , 𝑥),∀𝑥 ∈ 𝑆.

The controller margin is called local (denoted as 𝜈𝑙(𝑇 , 𝑥)) if 𝜈 varies
with 𝑥, and global (denoted as 𝜈𝑔(𝑇 )) if 𝜈 is independent of 𝑥. The
superscripts 𝑙 and 𝑔, respectively, denote the corresponding cases, and
𝜈 is denoted with the same sub/superscripts as the corresponding 𝜙
function. For instance,

𝜈𝑔0 (𝑇 ) =
𝑙1𝛥
𝑙2

(𝑒𝑙2𝑇 − 1) (91)

is the controller margin of 𝜙𝑔0 defined in (89), and is a global margin
because it is independent of 𝑥.

Note that condition (4) imposes that the time derivative of ℎ van-
ishes as ℎ approaches the boundary of the safe set. In contrast, the
ZOH-CBF condition (88) causes the time derivative of ℎ to vanish at
a manifold in the interior of the safe set. Inspired from this, we define
a second metric of comparison, which captures the maximum distance
between this manifold and the boundary of the safe set.

Definition 7.5 (Physical margin). For a solution 𝜙 of Problem 7.2 with
the form (90), the physical margin is the function 𝛿 ∶ R>0 → R defined
as

𝛿(𝑇 ) ≜ sup
{𝑥∈𝑆 ∣ 𝜙(𝑇 ,𝑥)=0}

−ℎ(𝑥) . (92)

Intuitively, 𝛿 quantifies the effective shrinkage of the safe set due
to the error introduced by discrete sampling. The condition (88) may

https://www.youtube.com/watch?v=83o7CEgTEwo
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𝑥

exclude closed-loop trajectories from entering the set 𝑆𝛿 = {𝑥 ∣ −𝛿 ≤
ℎ(𝑥) ≤ 0}, while the condition (4) does not. Thus, a smaller physical
margin 𝛿 implies a smaller subset 𝑆𝛿 of the safe set where system
trajectories may not be allowed to enter. In our paper (Breeden et al.,
2022) we develop three solutions to Problem 7.2 that have lower
controller and/or physical margins than 𝜙𝑔0 , in both local and global
forms, which follow from either continuous-time CBF conditions such
as (4), or discrete-time CBF conditions (Agrawal & Sreenath, 2017;
Blanchini, 1999). In the interest of space, in this tutorial paper, we
will refer to only one of the results and interested readers are referred
to Breeden et al. (2022) for a thorough analysis and comparison among
all three methods and their relation to the state-of-the-art.

7.2.3. A less conservative methodology
Rather than choosing 𝜙 so as to enforce (4) between sample times,

as is done in Cortez et al. (2021b), Singletary et al. (2020) and Usevitch
and Panagou (2021), here we start from a discrete-time CBF condition
and apply it to an approximation of the continuous-time dynamics.
One sufficient discrete-time CBF condition, as shown in Agrawal and
Sreenath (2017), is

ℎ(𝑥𝑘+1) − ℎ(𝑥𝑘) ≤ −𝛾ℎ(𝑥𝑘), ∀𝑘 ∈ N (93)

for some 𝛾 ∈ (0, 1]. In general, this condition is not control-affine.
However, its linear approximation is control-affine and thus amenable
to inclusion in a QP. The error of a linear approximation of a twice
differentiable function is bounded by the function’s second derivative.
For brevity, define 𝜓(𝑥, 𝑢) ≜ ∇[ℎ̇(𝑥)] (𝑓 (𝑥) + 𝑔(𝑥)𝑢) which represents the
second derivative of ℎ between time steps. Since 𝑓, 𝑔,∇[ℎ] are assumed
locally Lipschitz, 𝜓 is defined almost everywhere. Let (𝑥, 𝑇 ) denote
the set of states reachable from some 𝑥(0) ∈ 𝑆 in times 𝑡 ∈ [0, 𝑇 ). Define
the bound

𝜂(𝑇 , 𝑥) ≜ max

{(

sup
𝑧∈(𝑥,𝑇 )⧵,𝑢∈𝑈

𝜓(𝑧, 𝑢)

)

, 0

}

, (94)

where  is any set of Lebesgue measure zero (to account for CBFs that
are not twice differentiable everywhere). A solution to Problem 7.2 is
then as follows.

Theorem 7.2. The function 𝜙𝑙3 ∶ R>0 × R𝑛 → R, defined as

𝜙𝑙3(𝑇 , 𝑥) ≜ −
𝛾
𝑇
ℎ(𝑥) − 1

2
𝑇 𝜂(𝑇 , 𝑥)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜈𝑙3(𝑇 ,𝑥)

(95)

solves Problem 7.2, for any 𝛾 ∈ (0, 1].

In Breeden et al. (2022), we provide a detailed discussion and proofs
on how this method is less conservative as compared to (89) and to the
other methods derived. Here, we only demonstrate this by simulation.
Finally, if one wishes to instead use a global margin to avoid needing
to compute , the function 𝜙𝑔3 ∶ R>0 → R as follows also solves
Problem 7.2:

𝜙𝑔3(𝑇 , 𝑥) ≜ −
𝛾
𝑇
ℎ(𝑥) − 1

2
𝑇 sup
𝑧∈𝑆

𝜂(𝑇 , 𝑧)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝜈𝑔3 (𝑇 )

. (96)

See also (Breeden & Panagou, 2023a) for extensions of (96).

7.2.4. Simulation results
We present a case study involving a robotic agent modeled as the

unicycle system

̇ 1 = 𝑢1 cos(𝑥3), 𝑥̇2 = 𝑢1 sin(𝑥3), 𝑥̇3 = 𝑢2,

where [𝑥1, 𝑥2]𝑇 is the position, 𝑥3 is the orientation, and 𝑢1, 𝑢2 are the
linear and angular velocity of the agent; its task is to move around an
obstacle at the origin using the CBF (Srinivasan, Hyun, & Coogan, 2019)

ℎ = 𝜌 −
√

𝑥21 + 𝑥
2
2 − (wrap(𝑥3 − 𝜎 arctan 2(𝑥2, 𝑥1)))2,
19

𝜋

Table 1
Global physical margins for selected time-steps 𝑇 .
𝑇 0.1 0.01 0.001

𝛿𝑔0 1.2(10)42 420 0.010

𝛿𝑔1 0.54 0.054 0.0054

𝛿𝑔2 0.53 0.053 0.0053

𝛿𝑔3 0.013 1.3(10)−4 1.3(10)−6

Fig. 19. The trajectories of the unicycle for 4 of the 7 margin functions.

where 𝜌 is the radius to be avoided, and 𝜎 is a shape parameter. We
choose 𝑇 = 0.1, 𝛼(𝜆) = 𝜆 for 𝜙𝑔0 , and 𝛾 = 1 for 𝜙𝑙3, 𝜙

𝑔
3 . Other notable

parameters are listed in Breeden et al. (2022, Table 1).
The agent moves under the following controller

𝑢 = argmin𝑢∈𝑈‖𝑢 − 𝑢nom‖ s.t. (88) is satisfied (97)

where 𝑢nom is a nominal control law that ignores the obstacle. Note that
the local margin (95) requires 𝜈𝑙3 to be computed online (or computed
offline and stored in a function); this computation took 0.018 s per
control cycle on a 3.5 GHz computer using MATLAB R2019b. The
global margin (96) only requires 𝜈𝑔3 to be computed once offline, which
took under a minute. In total, 7 solutions (𝜙𝑔0 , 𝜙𝑔1 , 𝜙𝑙1, 𝜙

𝑔
2 , 𝜙𝑙2, 𝜙

𝑔
3 , 𝜙𝑙3)

to Problem 7.2 were tested; simulation code and details on the other
methods 𝜙𝑙1, 𝜙

𝑔
1 , 𝜙𝑙2, 𝜙

𝑔
2 can be found in Breeden et al. (2022).

The trajectories of the unicycle around an obstacle are plotted in
Fig. 19, where the green marker is the target location. Only four
methods are shown because using 𝜙𝑔0 , 𝜙𝑔1 , 𝜙𝑙1 resulted in the agent
turning away from the target due to excessive conservatism. The instan-
taneously required controller margins 𝜈 for all 7 methods, computed for
𝑥(𝑡) along the 𝜙𝑙3 trajectories from Fig. 19, are plotted in the top plot in
Fig. 20. Note the logarithmic scale; the prior work 𝜈𝑔0 is omitted because
𝜈𝑔0 = 1.3(10)50, indicating that this method cannot be used at the chosen
time step of 𝑇 = 0.1.

Next, consider the physical margins. As (92) includes a supremum
over 𝑆, the physical margin is inherently a global quantity. Physical
margins for the prior work 𝜙𝑔0 and the three new global margins 𝜙𝑔1 ,
𝜙𝑔2 , and 𝜙𝑔3 are computed in Table 1. Note how the physical margin for
𝜙𝑔3 decreases quadratically with 𝑇 , whereas the other methods decrease
linearly with 𝑇 ; the reasoning for this is elaborated upon in Breeden
et al. (2022). Finally, the CBF values during the simulations from
Fig. 19 are also shown in Fig. 20. The peaks of the dashed lines agree
well with the theoretical values in the first column of Table 1. Noting
these physical margins, we added a second constraint that forced the
unicycle to navigate through a narrow corridor only 0.3 units wide,
shown in Fig. 21. The unicycle operating under 𝜙𝑔3 or 𝜙𝑙3 makes it
through the obstacles, while the best of the other methods (𝜙𝑙2) could
not.
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Fig. 20. Top: Controller margins for the unicycle system. Bottom: CBF values along
the 4 unicycle trajectories in Fig. 19.

Fig. 21. A simulation with two tightly-spaced obstacles, in which controllers using
margins 𝜙𝑙3 and 𝜙𝑔3 permit passage through the obstacles, while the other functions
force the agent to stop.

8. Adversarially-robust control barrier functions

We present applications of CBFs to the control of multi-agent/multi-
robot systems in the presence of adversaries. We first review our
results on Adversarially-Robust CBFs, which provide safety conditions
for sampled-data distributed control when agents are behaving adver-
sarially. Then we present an application of the method to resilient
control against adversarial agents.

8.1. Sampled-data distributed control

The idea of assuring forward invariance of a set under sampled-data
implementation can be utilized and extended to control sampled-data
multi-agent systems. In our work (Usevitch & Panagou, 2021, 2023)
we consider a class of functions describing safe sets that have a high
relative degree with respect to (w.r.t.) the system dynamics, where
the control inputs of the agents do not appear for one or more time
derivatives of the safe-set function. We also consider asynchronous
sampling times with clock disturbances, the presence of adversarially
behaving agents, and functions describing safe sets that have high
relative degrees w.r.t. the system dynamics. Our goal is to establish a
framework under which a set of normally behaving agents in a system
with sampled-data dynamics can collaboratively render a safe set for-
ward invariant despite the actions of adversarial agents. Our analysis
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considers asynchronous sampling times and distributed calculation of
agents’ control inputs.

More specifically, we consider a group of 𝑁 ∈ Z>0 agents, with the
set of agents denoted by  and each agent indexed {1,… , 𝑁}. Each
agent 𝑖 ∈  has the state 𝑥𝑖 ∈ R𝑛𝑖 , 𝑛𝑖 ∈ Z>0 and input 𝑢𝑖 ∈ R𝑚𝑖 , 𝑚𝑖 ∈ Z>0.

In addition, at each 𝑡𝑘𝑖 ∈ 𝑖 the agent 𝑖 applies a zero-order hold
(ZOH) control input 𝑢(𝑡𝑘𝑖 ) that is constant on the time interval 𝑡 ∈
[𝑡𝑘𝑖 , 𝑡

𝑘+1
𝑖 ). For brevity, we denote 𝑥𝑘𝑖𝑖 = 𝑥𝑖(𝑡𝑘𝑖 ) and 𝑢𝑘𝑖𝑖 = 𝑢𝑖(𝑡𝑘𝑖 ). The

sampled-data dynamics of each agent 𝑖 ∈  under its ZOH controller
on each interval 𝑡 ∈ [𝑡𝑘𝑖 , 𝑡

𝑘+1
𝑖 ) is as follows:

𝑥̇𝑖(𝑡) = 𝑓𝑖(𝑥𝑖(𝑡)) + 𝑔𝑖(𝑥𝑖(𝑡))𝑢𝑖(𝑡𝑘𝑖 ) + 𝜙𝑖(𝑡). (98)

The functions 𝑓𝑖, 𝑔𝑖 may differ among agents, but are all locally Lips-
chitz on their respective domains R𝑛𝑖 . The functions 𝜙𝑖 ∶ R → R𝑛𝑖 , 𝑖 ∈
 , are locally Lipschitz in 𝑡 and model disturbances to the system (98).
Each 𝜙𝑖 is bounded as per the following assumption:

Assumption 8.1. For all 𝑖 ∈  , the disturbances 𝜙𝑖(𝑡) satisfy ‖𝜙𝑖(𝑡)‖ ≤
𝜙max
𝑖 ∈ R≥0, ∀𝑡 ≥ 0.

Safety of the multi-agent system can be collaboratively preserved by
defining a multi-agent CBF ℎ as

𝑆 = {𝑥⃗ ∈ R𝑛̄ ∶ ℎ(𝑥⃗) ≤ 0},

𝜕𝑆 = {𝑥⃗ ∈ R𝑛̄ ∶ ℎ(𝑥⃗) = 0},

int(𝑆) = {𝑥⃗ ∈ R𝑛̄ ∶ ℎ(𝑥⃗) < 0}.

(99)

Forward invariance of ℎ can be guaranteed by satisfying the condition

∑

𝑖∈

(

𝐿𝑓𝑖ℎ
𝑥𝑖 (𝑥⃗) + 𝐿𝑔𝑖ℎ

𝑥𝑖 (𝑥⃗)𝑢𝑖 + 𝐿𝜙𝑖ℎ
𝑥𝑖 (𝑥⃗)

)

≤ −𝛼(ℎ(𝑥⃗)), (100)

for a class-∞ function 𝛼, which follows from a comparison result
(Konda, Ames, & Coogan, 2020). Prior literature assumed the coop-
eration of all agents to collaboratively ensure the satisfaction of the
safety condition for forward invariance of ℎ. Our work dropped this
assumption and considered the presence of a subset of adversarial agents
 ⊂  that apply the following control input for all sampling times 𝑡𝑘𝑗 ,
𝑘 ∈ Z≥0, 𝑗 ∈ :

𝑢max
𝑗 (𝑥⃗𝑘𝑗 ) = arg max

𝑢∈𝑗

[

𝐿𝑓𝑗ℎ
𝑥𝑗 (𝑥⃗𝑘𝑗 ) + 𝐿𝑔𝑗ℎ

𝑥𝑗 (𝑥⃗𝑘𝑗 )𝑢
]

. (101)

Agents that are not adversarial are called normal. The set of normal
agents is denoted  = ∖. Dividing the left-hand side (LHS) of (100)
into normal and adversarial parts yields the following sufficient condi-
tion for set invariance in the presence of adversaries:
∑

𝑗∈

(

𝐿𝑓𝑗ℎ
𝑥𝑗 (𝑥⃗) + 𝐿𝑔𝑗ℎ

𝑥𝑗 (𝑥⃗)𝑢max
𝑗 + 𝐿𝜙𝑗ℎ

𝑥𝑗 (𝑥⃗)
)

+ (102)

∑

𝑖∈

(

𝐿𝑓𝑖ℎ
𝑥𝑖 (𝑥⃗) + 𝐿𝑔𝑖ℎ

𝑥𝑖 (𝑥⃗)𝑢𝑖 + 𝐿𝜙𝑖ℎ
𝑥𝑖 (𝑥⃗)

)

≤ −𝛼(ℎ(𝑥⃗)).

The form of (102) reflects sampled-data adversarial agents seeking
to violate the set invariance condition in (100) by maximizing their
individual contributions to the LHS sum. The normal agents must
compute control inputs that render the set 𝑆 forward invariant using
the sufficient condition in (102) despite the worst-case behavior of the
adversarial agents in .

In addition to the ZOH sampled data dynamics and adversarial
actions, the normal agents must take into account asynchronous sam-
pling times. The assumption of identical, synchronous sampling times
typically does not hold in practice. Also, a distributed system may not
have access to a centralized entity to solve QP computing control inputs
for all normal agents. Finally, safety may be defined in terms of CBFs
which may have a high relative degree with respect to the agents’
dynamics. It is therefore necessary to consider heterogeneous sampling
times, distributed methods for computing local control inputs, and CBFs
with a high relative degree.
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Fig. 22. An illustration of the effect of the 𝜂 term in the definition of the safety-
preserving safe set. The 𝜂 function ensures that safety is maintained at all times
despite the sampled-data dynamics and heterogeneous sampling/communication times.
This is accomplished by contracting the original safe set. The amount of contraction
is proportional to several factors including the sampling period, the agents’ 𝑓 and 𝑔
dynamics functions, and an upper bound on temporal disturbances to sampling times.

In consideration of these challenges, our work (Usevitch & Panagou,
2023) defined the following safety-preserving control set for each
normal agent 𝑖 ∈  :

𝐾𝜓
𝑖 (𝑥⃗

𝑘𝑖 ) =
{

𝑢𝑖 ∈ 𝑖 ∶ 𝜓𝑑𝑞 (𝑥⃗
𝑘𝑖 ) ≤ 0

}

, (103)

=
{

𝑢𝑖 ∈ 𝑖 ∶ 𝐿𝑓𝑖 (𝜓
𝑑
𝑞−1)

𝑥𝑖 (𝑥⃗𝑘𝑖 ) + 𝐿𝑔𝑖 (𝜓
𝑑
𝑞−1)

𝑥𝑖 (𝑥⃗𝑘𝑖 )𝑢𝑖 (104)

+
∑

𝑙∈∖{𝑖}

[

𝐿𝑓𝑙 (𝜓
𝑑
𝑞−1)

𝑥𝑙 (𝑥⃗𝑘𝑖 ) + 𝐿𝑔𝑙 (𝜓
𝑑
𝑞−1)

𝑥𝑙 (𝑥⃗𝑘𝑖 )𝑢̂𝑘𝑖𝑙
]

(105)

+
∑

𝑗∈
𝛾max
𝑗 (𝑥⃗𝑘𝑖 ) + 𝛼𝑞(𝜓𝑑𝑞−1(𝑥⃗

𝑘𝑖 )) + 𝜂′(𝛤𝑖 + 𝛿max) ≤ 0
}

. (106)

In this equation, the functions (𝜓𝑑𝑞−1)
𝑥𝑖 for each agent 𝑖 ∈  each

represent the last of a series of functions 𝜓𝑖+1 ≜ 𝜓̇𝑖(𝑥⃗) + 𝛼𝑖+1(𝜓𝑖(𝑥⃗))
typically defined to account for CBFs with high relative degree (Xiao
& Belta, 2019b). The term 𝛾max

𝑗 is a function describing the worst-case
adversarial behavior with respect to the CBF safety condition:

𝛾max
𝑖 (𝑥⃗) = max

𝑢𝑖∈𝑖

[

𝐿𝑓𝑖ℎ
𝑥𝑖 (𝑥⃗) + 𝐿𝑔𝑖ℎ

𝑥𝑖 (𝑥⃗)𝑢𝑖
]

. (107)

The function 𝜂′ in (103) accounts for the evolution of system dy-
namics between sampling times and heterogeneous sampling instances
between agents and is defined as

𝜂′(𝛤 ) =
(

𝑐′𝑓 + 𝑐′𝑔𝑢max + 𝑐′𝛼 + 𝑐
′
𝛾̂

)

𝜖(𝛤 ). (108)

The variables 𝛤𝑖 and 𝛿max in (103) account for heterogeneous nominal
sampling periods and an upper bound on disturbances to the nominal
sampling times, respectively (see Fig. 22). For each normal agent 𝑖 ∈
 , applying a control input 𝑢𝑘𝑖𝑖 ∈ 𝐾𝑖(𝑥⃗𝑘𝑖 ) guarantees that the trajectory
of the combined normal agents’ states remains within the safe set for
all times within the sampling interval 𝑡 ∈ [𝑡𝑘𝑖 , 𝑡

𝑘+1
𝑖 ):

Theorem 8.1. Consider the system (98) with sampling times described by
𝑖 = {𝑡0𝑖 , 𝑡

1
𝑖 ,…} s.t. 𝑡𝑘+1𝑖 − 𝑡𝑘𝑖 = 𝛤𝑖 + 𝛿𝑖(𝑘), ∀𝑘 ∈ ≥0,. If at sampling time

𝑡𝑘𝑖 for 𝑘 ≥ 0, 𝑖 ∈  it holds that 𝑥⃗𝑘𝑖 ∈ 𝑆, then for any 𝑢𝑘𝑖𝑖 ∈ 𝐾𝑖(𝑥⃗𝑘𝑖 ) the
trajectory 𝑥⃗(𝑡) satisfies 𝑥⃗(𝑡) ∈ 𝑆 for all 𝑡 ∈ [𝑡𝑘𝑖 , 𝑡

𝑘+1
𝑖 ).

The safe control inputs 𝑢𝑘𝑖𝑖 ∈ 𝐾𝑖(𝑥⃗𝑘𝑖 ) can be computed for each
normal agent 𝑖 in a distributed manner using a convex quadratic
programming formulation:

𝑢𝑖(𝑥⃗𝑘𝑖 ) =argmin‖𝑢𝑖 − 𝑢
𝑘𝑖
𝑖,nom‖

2
2 (109)
21

𝑢𝑖∈𝑖
s.t.
(

𝐿𝑓𝑖ℎ
𝑥𝑖 (𝑥⃗𝑘𝑖 ) + 𝐿𝑔𝑖ℎ

𝑥𝑖 (𝑥⃗𝑘𝑖 )𝑢𝑖
)

+
∑

𝑙∈∖{𝑖}

(

𝐿𝑓𝑙ℎ
𝑥𝑙 (𝑥⃗𝑘𝑖 ) + 𝐿𝑔𝑙ℎ

𝑥𝑙 (𝑥⃗𝑘𝑖 )𝑢̂𝑘𝑖𝑙
)

+

∑

𝑗∈
𝛾max
𝑗 (𝑥⃗𝑘𝑖 ) + 𝛼(ℎ(𝑥⃗𝑘𝑖 ))+

𝜂(𝛤𝑖 + 𝛿max) ≤ 0.

Further details about these results can be found in Usevitch and
Panagou (2023).

9. Non-smooth control

Many forward invariance results in prior literature on CBF assume
that the agent’s control input is Lipschitz continuous. At the same time,
the majority of CBF results rely upon computing safe control inputs
via a parametric convex quadratic program (QP). Demonstrating that
the Lipschitz continuity of a parametric QP is nontrivial in general (see
Fig. 23).

Our work in Usevitch, Garg, and Panagou (2020) addresses a simple
question: Can forward invariance be assured for discontinuous control
inputs? Our results in Usevitch et al. (2020) answer this in the affir-
mative. Unlike prior literature, our work approaches the problem using
the notions of Clarke tangent cones and transversality. We demonstrate
that a constrained control input simultaneously rendering these subsets
invariant can be generated by simply solving a feasibility problem with
compact linear constraints. The control input is only required to be
Lebesgue measurable and is not required to be continuous.

This work considers control affine systems in the form

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡),

𝑢(𝑡) ∈  ⊂ R𝑚 ∀𝑡 ≥ 𝑡0.
(110)

where the functions 𝑓 ∶ R𝑛 → R𝑛 and 𝑔 ∶ R𝑛 → R𝑛×𝑚 are assumed to
be locally Lipschitz on R𝑛 and the set  is a compact, convex polytope
with int( ) ≠ ∅ which has the form

 = {𝑢 ∈ R𝑚 ∶ 𝐴𝑢𝑢 ≤ 𝑏𝑢},

𝐴𝑢 ∈ R𝑝×𝑚, 𝑏𝑢 ∈ R𝑝×1,
(111)

where 𝐴𝑢, 𝑏𝑢 are constant. Our analysis requires the notion of strict
CBFs, which are defined as follows:

Definition 9.1. The continuously differentiable function ℎ ∶ R𝑛 → R
is called a strict CBF for the set 𝑆 ⊂ R𝑛 defined as 𝑆 = {𝑥 ∣ ℎ(𝑥) ≤ 0} if
the following holds:

inf
𝑢∈

[

𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢
]

< 0 ∀𝑥 ∈ 𝜕𝑆, (112)

where 𝑓, 𝑔 are defined as in (110).

Our work approaches the problem by designing a differential inclu-
sion of the form

𝐺(𝑥) = {𝑓 (𝑥) + 𝑔(𝑥)𝑢 ∶ 𝑢 ∈ 𝐾(𝑥)}, (113)

where the set-valued map 𝐾 ∶ R𝑛 → (R𝑚) satisfies 𝐾(𝑥) ⊆  for all
𝑥 ∈ R𝑛. When a single safe set is being considered, 𝐾 is defined as

𝐾(𝑥) =
{

𝑢 ∈ R𝑚 ∶
[

𝐴𝑆 (𝑥)
𝐴𝑢

]

𝑢 ≤
[

𝑏𝑆 (𝑥)
𝑏𝑢

]}

, (114)

To ensure that the set-valued maps are locally Lipschitz, we consider a
𝛾-contraction of 𝐾 and 𝐺 defined as

𝐾𝛾 (𝑥) = int(𝐾(𝑥)) − 𝛾𝐵(0, 1), (115)

= {𝑢 ∈ 𝐾(𝑥) ∶ 𝑑𝐾𝑐 (𝑢) ≥ 𝛾}, 𝐾𝑐 = R𝑚∖𝐾(𝑥), (116)

𝐺𝛾 (𝑥) =
{

𝑣 ∈ R𝑛 ∶ 𝑣 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, 𝑢 ∈ 𝐾𝛾 (𝑥)
}

. (117)

The following result demonstrates conditions under which forward
invariance of a safe set under a discontinuous control input can be

guaranteed.
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Fig. 23. Still frames from a simulation involving adversarially resilient CBFs. Normal agents are represented by blue circles and adversarial agents are represented by red circles.
he dotted red lines around the blue circles represent normal agents’ safety radii. The time-varying formation trajectory is represented by the dotted magenta line; the magenta
iamond represents the center of formation. Black crosses represent agents’ nominal local time-varying formational points.
heorem 9.1. Consider the system

̇ (𝑡) ∈ 𝐺𝛾 (𝑥(𝑡)). (118)

Let 𝑆 be a safe set for some strict control barrier function ℎ. Let 𝑥(⋅) be
any trajectory of (118) under a Lebesgue measurable control input 𝑢(⋅) with
𝑥0 = 𝑥(0) ∈ int(𝑆 ∩ 𝛺). Let [0, 𝑇 (𝑥0)) be the (possibly empty) maximal
interval such that 𝑥(𝑡) ∈ int(𝛺) for all 𝑡 ∈ [0, 𝑇 (𝑥0)). Then 𝑥(𝑡) ∈ 𝑆 for all
𝑡 ∈ [0, 𝑇 (𝑥0)).

It is common to consider multiple safe sets 𝑆𝑖 = {𝑥 ∣ ℎ𝑖(𝑥) ≤
0} simultaneously. In other words, we seek to render the composed
set 𝑆𝐼 =

⋂𝑁ℎ
𝑖=1 𝑆𝑖 strongly invariant. Towards this end we define the

set-valued map

𝐾(𝑥) =
{

𝑢 ∈ R𝑚 ∶
[

𝐴̂𝑆 (𝑥)
𝐴𝑢

]

𝑢 ≤
[

𝑏̂𝑆 (𝑥)
𝑏𝑢

]}

,

𝐴̂𝑆 ∶ R𝑛 → R𝑞×𝑚, 𝑏̂𝑆 ∶ R𝑛 → R𝑞 .
(119)

where 𝐴̂𝑆 , 𝑏̂𝑆 are defined as

𝐴̂𝑆 (𝑥) =
⎡

⎢

⎢

⎣

𝐿𝑔ℎ1(𝑥)
⋮

𝐿𝑔ℎ𝑁ℎ (𝑥)

⎤

⎥

⎥

⎦

,

𝑏̂𝑆 (𝑥) =
⎡

⎢

⎢

⎣

−𝛼1(ℎ1(𝑥)) − 𝐿𝑓ℎ1(𝑥)
⋮

−𝛼𝑁ℎ (ℎ𝑁ℎ (𝑥)) − 𝐿𝑓ℎ𝑁ℎ (𝑥)

⎤

⎥

⎥

⎦

. (120)

We similarly define the 𝛾̂-contractions 𝐾𝛾̂ (𝑥) = int(𝐾(𝑥)) − 𝛾̂𝐵(0, 1) and
𝐺𝛾̂ (𝑥) =

{

𝑣 ∈ R𝑛 ∶ 𝑣 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, 𝑢 ∈ 𝐾𝛾̂ (𝑥)
}

. The following result
establishes conditions under which forward invariance of the composed
set 𝑆𝐼 holds under possibly discontinuous control inputs.

Theorem 9.2. Consider the system

̇ (𝑡) ∈ 𝐺𝛾̂ (𝑥(𝑡)). (121)

Consider the set 𝑆𝐼 =
⋂𝑁ℎ
𝑖=1 𝑆𝑖 and suppose that the transversality condition

holds for the pair (𝑆𝑖, 𝑆𝑗 ) for all 𝑖, 𝑗 ∈ 𝐼(𝑥). Let 𝑥(⋅) be any trajectory
of (121) under a Lebesgue measurable control input 𝑢(⋅) with 𝑥0 = 𝑥(0) ∈
int(𝑆𝐼∩𝛺). Let [0, 𝑇 (𝑥0)) be the (possibly empty) maximal interval such that
𝑥(𝑡) ∈ int(𝛺) for all 𝑡 ∈ [0, 𝑇 (𝑥0)). Then 𝑥(𝑡) ∈ 𝑆𝐼 for all 𝑡 ∈ [0, 𝑇 (𝑥0)).

A full exposition of the details can be found in Usevitch et al. (2020).

10. Recent extensions and ongoing/future work

This tutorial paper presented only a small fraction of the rich
literature on the theory and applications of Control Barrier Functions,
focusing on challenges such as safety under spatiotemporal and input
constraints, safety constraints of higher relative degree, robustness to
disturbances/noise, performance via prediction and online parame-
22

ter adaptation, safety under sampled-data implementation and output
feedback control, safety against adversarial inputs, and safety under
non-smooth inputs.

Many open problems remain, including how to scale the results
to multi-agent systems without adding conservatism, how to online
adapt to unknown nonlinear disturbances, and how to systematically
define CBFs that guide certifiable safe learning and exploration. Notable
recent extensions of the authors’ work include: how adversarially-
robust CBFs can be used for the detection and mitigation of ad-
versarial agent effects (Mustafa & Panagou, 2022); how CBFs can
be used in case of actuator failures and/or cyber attacks on actu-
ators (Garg, Dawson, Xu, Ornik, & Fan, 2023; Garg, Sanfelice, &
Cardenas, 2022); how CBFs ensure safety when an autonomous agent is
exploring an unknown environment to maximize clarity (or minimize
uncertainty) about the environment (Agrawal & Panagou, 2023); how
one can define CBFs and CLFs for systems with impulsive actuators and
dwell time constraints (Breeden & Panagou, 2023d); how to synthesize
safe controllers using Koopman-based identification of nonlinear mod-
els (Black & Panagou, 2023b); how to incorporate risk awareness for
the safety verification of stochastic systems (Black, Fainekos, Hoxha,
Prokhorov & Danil and Panagou, 2023); how to define multi-rate
architectures for safety verification across the planning and control
layers of differentially-flat systems (Agrawal et al., 2022); and how
learning-based methods can be used for safety of large-scale MAS using
distributed CBFs (Zhang, Garg, & Fan, 2023). Ongoing work includes
the investigation of methods for computing safety certificates/CBFs
online with provable guarantees, of methods that enable adaptable re-
silience against adversaries, and of methods that guide the exploration
of multiple robots in unknown constrained environments.
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