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Abstract— The Gulf Stream represents a major potential
resource for renewable energy but is presently only sparsely
characterized via radar, buoys, gliders, and intermittently op-
erating human-operated research vessels. Dramatically greater
resolution is possible through the use of persistently operating
autonomous surface vessels (ASVs), which can be powered
by wind, wave, or solar resources. Optimizing the control of
these ASVs, taking into account the device and environmental
properties, is crucial to obtaining good data. An ASV’s path and
velocity profile along that path both significantly influence the
amount of a mission domain that can be covered and, ultimately,
the scientific quality of the mission. While our previous work
focused on optimizing the path of a solar-powered ASV with
fixed speed, the present work represents the complement:
optimizing the speed for a given path, accounting for the ASV
dynamics, flow resource, and solar resource. We perform this
optimization through a model predictive controller that maxi-
mizes the projected distance traversed, with a terminal incentive
that captures the estimated additional long-duration range that
is achievable from a given terminal battery state of charge.
We present simulation results based on the SeaTrac SP-48
ASV, Mid-Atlantic Bight/South-Atlantic Bight Regional Ocean
Model, and European Centre for Medium-Range Weather
Forecasts solar model. Our results show improved performance
relative to simpler heuristic controllers that aim to maintain
constant speed or constant state of charge. However, we also
show that the design of the MPC terminal incentive and design
of the heuristic comparison controller can significantly impact
the achieved performance; by examining underlying simulation
results for different designs, we are able to identify likely causes
of performance discrepancies.

I. INTRODUCTION

The portion of the Gulf Stream adjacent to North Car-
olina’s Outer Banks has been estimated to possess 160
TWh/year of energy [1], making it a strong candidate for
deploying devices for harvesting renewable energy. However,
existing resource characterizations are limited by spatial
and temporal sparsity. Specifically, to date, these charac-
terizations have been made through buoy-mounted acoustic
Doppler current profilers (ADCPs), gliders, radar measure-
ments of surface currents, and ADCP-equipped research
vessels. Buoy-mounted ADCPs [2] allow for long-term data
collection (months) for an entire water column but are
restricted to a single location. Glider-mounted ADCPs (see
[3], [4]) allow for measurements to be taken across a full
path; however, the mission duration is limited by the flow
environment and the battery capacity. Research vessels [5]
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similarly allow for measurements taken across an entire path,
but persistence is precluded by staffing and fuel constraints.
Finally, radar [6] can measure surface flow across a wide
area but cannot measure sub-surface flow speeds.

To obtain a sufficiently spatially granular, long-duration
data set suitable for performing site studies for energy-
harvesting systems, the aforementioned sparse and/or short-
duration measurements must be supplemented by granular,
persistent, and autonomous observations. Renewably pow-
ered marine mobile robots, such as sailing drones [7] and
solar-powered autonomous surface vessels (ASVs) [8], aim
to satisfy those needs. These systems can operate persistent
missions, measure flow speeds at depth using ADCPs, and
move around in their environment.

To realize the full potential of renewably powered ASVs,
each ASV’s path and velocity profile must be controlled in a
way that maximizes the quantity and utility of the collected
scientific data. These control requirements are challenging
for two significant reasons. First, both the renewable re-
source and the flow environment (which impact the energetic
and dynamic performance of an ASV) vary in space and
time. This is particularly challenging in the Gulf Stream,
where the maximum surface currents can exceed 2 m/s,
which approaches the maximum achievable transit speeds
of existing sailing drones and solar-powered ASVs. Second,
paths and velocity profiles for persistent missions should
ideally be optimized over an infinite horizon, which stands
in contrast with most existing information-driven planning
studies aimed at oceanographic missions (See [9], [10]). Be-
cause infinite-horizon optimizations are generally not com-
putationally achievable, effective and tractable optimizations
for persistent missions require some estimate of the infinite-
horizon scientific value associated with a given battery state
of charge at the end of a finite horizon. Such a quantification
has not been studied to-date.

This paper addresses the velocity trajectory planning ele-
ment of persistent control. Specifically, for a prescribed path,
we present an MPC formulation that incentivizes distance
travelled over a finite prediction horizon, plus a terminal
incentive that acts as an estimate of the additional long-
horizon distance that can be traversed as a function of the
terminal state of charge (relative to the traversable long-
horizon distance under zero terminal state of charge). To
study the problem in a concrete manner, we focus on the
solar-powered SeaTrac SP-48 ASV, operating in a prescribed
mission domain within the U.S. Gulf Stream. We present
an energetic and mobility model for the ASV, along with
a tunable formulation for the MPC optimization’s terminal
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Fig. 1: SeaTrac ASV considered in this work [8] – Image
used with permission.

incentive. Based on this formulation, we compare the re-
sults of the MPC-based velocity trajectory controller against
two families of closed-form benchmarks: (i) controllers that
maintain a prescribed constant velocity whenever possible
(subject to a minimum allowable state of charge and the
requirement of fighting current to stay on the prescribed path)
and (ii) controllers that maintain prescribed time-of-day-
dependent battery state of charge whenever possible (subject
to the requirement of fighting current to stay on the pre-
scribed path). Our results show that the best MPC approach
outperforms the best implementable heuristic benchmarks;
however, tuning has a significant effect on performance in
each case. By examining key simulation variables, such as
the ASV velocity profile and state of charge profile, we are
able to gain some insight into the reasons why certain ap-
proaches outperform others. It is worth noting that while the
present paper’s focus is restricted to the problem of velocity
trajectory control, the algorithm and results presented herein
serve as a complement to our earlier work in [11], which
addresses path planning under the assumption of a prescribed
(un-optimized) velocity profile.

II. MODELING OF THE ASV AND ENVIRONMENT

For this work, we consider the SeaTrac SP-48, a solar-
powered ASV [8] shown in Fig. 1, with key parameters given
in Table I.

We model the ASV’s translational dynamics based on the
two-state model below:

ẋ = vb cosθb + v f (x,y, t)cosθ f (x,y, t)

ẏ = vb sinθb + v f (x,y, t)sinθ f (x,y, t)
(1)

where x and y are the two spatial states of the system, vb and
θb are the boat speed relative to the moving water and boat
heading (which serve as control variables), respectively, and
v f (x,y, t) and θ f (x,y, t) are the spatiotemporally varying flow
speed and direction at the x,y location of the boat. We also
model the state of charge of the on-board battery, denoted
by b, according to:

ḃ = ηsAsI(t)−ηmPD(vb)−Pe (2)

where ηs is the solar panel efficiency, As is the solar
panel area, I(t) is the solar shortwave radiation (in units of

TABLE I: Speed Control Parameters

Variable Name Symbol Value Units
Solar Panel Area As 4.17 m2

Average Solar Shortwave Radiation Iavg 175 W/m2

On-board Electronics Pe 100 W
Wetted Area Aw 5.82 m2

Solar Panel Efficiency ηs 0.18 -
Motor + Propeller Efficiency ηmp 0.25 -

Drag Coefficient CD 0.0030 -

Fig. 2: ASV power draw vs. boat speed

W/m2), ηm is the motor efficiency, PD(vb) is the power loss
due to hydrodynamic drag, and Pe is the electrical power
consumption of the on-board electronic systems. The power
loss from drag, PD(vb), is based on data made available by
SeaTrac, a fit for which is shown in Fig. 2.

In this paper, θb and vb are treated as control variables,
under the assumption that lower-level controllers quickly
regulate the ASV’s heading and speed to their target values.
In practice, the SeaTrac ASV does in fact come equipped
with a closed-loop heading controller, and the motor com-
mand to the ASV is monotonically related to vb. To obtain
values of v f (x,y, t) and I(t) used for the simulations in
this work, we obtained Gulf Stream flow data from the
MABSAB-ROMS hindcast model [12] and solar irradiance
data from the ERA-Interim model [13]. This work considers
a rectangular mission domain in the U.S. Gulf Stream,
adjacent to North Carolina’s Outer Banks and illustrated in
Fig. 3. This selected region lies at the confluence of three
critical water masses, namely the Mid-Atlantic Bight, South-
Atlantic Bight, and Gulf Stream, making it an extremely
interesting target for oceanographic observation. In addition
to showing the mission domain, Fig. 3 shows two snapshots
of the flow speed contours, demonstrating the spatiotemporal
variability of this disturbance. Fig. 4 shows the temporally
varying solar resource, which exhibits a predictable diurnal
pattern with inconsistent peaks from day to day. Because of
the size of the mission domain, spatial variation in the solar
irradiance is neglected.
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Fig. 3: Mission domain and flow resource at two selected times, separated by 18 days.

Fig. 4: Solar irradiance vs. time

Fig. 5: Prescribed transect path

III. CANDIDATE CONTROL STRATEGIES

The ASV controller must ultimately set the values for the
heading (θb) and speed relative to the moving water (vb).
In this work, we consider a prescribed mission path, shown
in Fig. 5. The pre-specification of the path makes heading
control relatively simple, but still non-trivial due to the fact
that the Gulf Stream flow, which can approach 2 m/s at
particular locations and times, will often act to push the
ASV off its path. Because of the pre-specification of the
path in this work, we have elected to work with a relatively
simple closed-form heading controller, which is used with
each candidate velocity controller. Velocity control represents
a critical subject matter in this work. In particular, we have
examined several velocity control strategies – both predictive
and heuristic – which are described in this section.

A. Heading Control

A common closed-form heading control strategy is con-
sidered throughout the results of this work. Written plainly,
the heading control strategy is to choose a heading such that
the ASV’s true velocity points towards the next waypoint,
where the waypoints are determined by the prescribed path
as shown in Fig. 5. If the relative velocity chosen by the
controller is insufficient to overcome the flow, the heading
is taken directly into the flow in order to minimize deviation
from the path. If the ASV leaves the path, it will continue in a
straight line to the next waypoint, at which point it will rejoin
the path. We chose the waypoints to be each of the points at
which the path changes direction; however, including more
waypoints would force the ASV to more closely adhere to the
path. Written mathematically, the heading controller chooses:

θb =

{
π +θ f if vb < v f sin(θ f w)

θw + sin−1 ( v f
vb

sin(θ f w)
)

if vb ≥ v f sin(θ f w)
(3)

where θ f and θw are the flow direction and heading to the
next waypoint, respectively, and θ f w = θ f −θw.

B. Model Predictive Velocity Control (MPC)

For this work, we consider multiple MPC variants, al-
though all of them share the same general framework. In
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particular, at each discrete time step, denoted as k, an
N × 1 sequence of speeds vb(k) is optimized based on the
maximization of a prescribed reward function, subject to hard
constraints and a discrete-time approximation of the dynamic
model. The elements of this sequence (for the optimization
performed at step k) will be denoted as:

vb(k) = [ vb(k|k) . . . vb(k+N −1|k) ]T . (4)

The first element of that N-step optimized trajectory is
implemented, and the optimization is performed again at the
next time step. Mathematically, vb(k) is the solution to the
following optimization problem:

max
vb(k)

J(vb(k);x(k),y(k),b(k)) =
k+N−1

∑
i=k

d(vb(i|k))

+ J̃∗∞(b(k+N|k))
s.t. bmin ≤ b(i|k)≤ bmax i = k+1 . . .N

vmin ≤ vb(i|k)≤ vmax i = k+1 . . .k+N −1
Equations (1), (2), and (3)

(5)

where d(vb(i|k)) is the projected distance traveled (projected
onto the path) during time step i, accounting for the flow
disturbance, b(i|k) is the projected battery state of charge at
time step i, and J̃∗∞(b(k+N|k)) is the estimate of the optimal
infinite horizon reward to go. This is the term that accounts
for the fact that the mission is designed to be persistent
whereas the optimization only accounts for a fixed amount
of time (the prediction horizon). The purpose of this term is
to estimate the amount of extra “value” that exists at the end
of the prediction horizon based on contextual factors (i.e.
how much extra distance the remaining battery is worth).
The result of the MPC optimization is a control sequence,
v∗b(k), for which the first step is implemented as follows:

vb(k) = v∗b(k|k). (6)

The differences between the MPC variants considered in
this work lies in the formulations for the reward to go terms.
We now review the candidate mathematical structures (and
rationale for choosing said structures) for this reward to go.

1) Baseline Reward to Go: For the first reward to go
formulation, we define v(P) as the inverse of the power curve
in figure 2. This represents the steady-state, or “break-even,”
speed associated with power level P in calm water. Based on
this characterization, the terminal reward in this formulation
characterizes the additional distance that can be traversed
with state of charge b, compared with a state of charge equal
to zero, over a finite future period of time, T . Due to the fact
that saving battery for multiple days is infeasible due to the
overwhelming sunlight at midday, we take this period of time
to be T = 6 hours, in this work. To make this calculation, we
must predict an amount of available solar irradiance over that
time window. For this terminal reward variant, we assume the
the average solar irradiance for the mission domain, denoted
by Pavg, will be available. With these ingredients in place,
J̃∗∞(b) is given by:

J̃∗∞(b) = T
(

v
(

Pavg +
b
T

)
− v(Pavg)

)
(7)

2) Scheduled Reward to Go: The aforementioned formu-
lation makes the assumption that solar power is constant
when in reality, it strongly depends on time of day. For the
second MPC implementation, we measure the average power
expenditure as a function of time of day from a simulation
of the previous version of MPC, Pavg(t), where t represents
time of day. Our new reward to go is then:

J̃∗∞(b) = T
(

v
(

Pavg(t)+
b
T

)
− v(Pavg(t))

)
(8)

3) Terminal Cost: For this MPC implementation, we uti-
lize the knowledge that solar power depends on time of day,
as explored in the previous implementation. However, while
the scheduled reward to go formulation estimates future
performance based upon estimates of power consumption,
this implementation takes advantage of the fact that the
cyclic nature of the solar resource incentivizes a similarly
cyclic state of charge. We represent a typical state of charge
trajectory in Fig. 6. This MPC formulation uses that state
of charge trajectory as a target and penalizes deviation from
it at the end of the MPC horizon. Thus, we have that our
terminal cost is given by:

J̃∗∞(b) =−kp (b(t)−bdes(t)) (9)

where kp represents a gain tuned heuristically, b(t) is the
battery state of charge at the end of the prediction horizon,
and bdes(t) is the prescribed battery state of charge at the
end of the prediction horizon. For this implementation, we
use kp = 0.75.

C. Closed-Form Heuristic Benchmarks

For comparison, we consider several closed-form heuristic
benchmark controllers. These controllers not only act as
benchmarks to compare the performance of MPC against;
they also serve as dramatically simpler control structures that
in some cases can be tuned to approximate the performance
of MPC. It is also worth noting that some of the benchmarks
depend on omniscient knowledge that is not in fact available
for real-time control; in these circumstances, the benchmarks
result in upper bounds on the performance of any control
strategy.

Each benchmark controller operates slightly differently,
but there are a few key concepts that hold for each. Most
importantly is the concept that wasting energy is inherently
suboptimal (and therefore should be minimized for a rea-
sonable benchmark). Specifically, energy harvested when at a
full battery is wasted due to battery size constraints. Because
a large amount of solar power is available during the middle
of the day, often exceeding the maximum power draw from
the motor, some increase in state of charge during those hours
is unavoidable. For this reason, the general trend for any
reasonable velocity trajectory will involve moving quickly
during the daytime (in order to minimize energy losses
from overcharging the battery) and moving slower at night.
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Fig. 6: Prescribed state of charge vs. time. Note that, based on
the way that the data is formatted, the beginning of each day
corresponds to noon, which also corresponds to the largest
solar irradiance. Hence, it is advantageous for the battery to
be at a low state of charge at this time.

Furthermore, the battery level just before peak irradiance
should be somewhat low to account for the unavoidable
energy gain.

The following sections detail the formulations for four
benchmarks that are designed to follow the above guidance
in slightly different ways.

1) Constant State of Charge Benchmark: The first bench-
mark strategy attempts to avoid overcharging by keeping the
battery state of charge as close as possible to a constant,
prescribed value during the day by increasing the power
given to the motor to match the power generated by the
solar panels. However, at peak irradiance, this strategy still
generates energy in excess of what the motor is able to
expend. For this reason, a minimum speed is enforced,
enabling the ASV to use the excess energy to travel at a
slower speed during the nighttime when there is no solar
energy incoming. Mathematically, this strategy is represented
as follows:

vb,min =

{
||⃗vmin − v⃗ f || if ˆ⃗vmin · v⃗ f ≤ ||⃗vmin||
v f sin(θ f −θb) if ˆ⃗vmin · v⃗ f > ||⃗vmin||

(10)

vb = min(vb,max,max(v(Pb),vb,min)) (11)

where v(Pb) is the velocity required to draw a power
equivalent to the power generated from the solar irradiance,
v⃗min is the vector representing traveling at the specified
minimum speed towards the next waypoint, and v⃗ f is the flow
velocity at the current point. For this strategy, we defined the
minimum true velocity as ||⃗vmin||= 0.5m/s.

The switching condition is in place to account for circum-
stances where the flow has a component towards the next
waypoint with a magnitude greater than ||⃗vmin||, in which
case moving at the speed of that flow component takes less
energy than moving at the specified minimum speed.

2) Prescribed State of Charge Setpoint Benchmark: While
the constant state of charge strategy makes an explicit effort
to avoid overcharging (or discharging) the battery, it does
not strategically leverage the battery in dealing with the
inevitable diurnal variations in the solar resource. In reality,
it is well-known that the solar resource will increase during
the morning, peak at midday, and decrease in the evening.
This can be capitalized upon by strategically charging the
battery during the day and discharging during the night.
To do so, we define a time-varying setpoint for the state
of charge shown in Fig. 6, and denoted by bdes(t). These
values were tuned heuristically in order to minimize energy
loss from overcharging the battery and repeat on a diurnal
cycle. Given this state of charge setpoint, the ASV velocity is
computed according to the following proportional controller:

vb(t) = v(Pb(t))+ kp(b(t)−bdes(t)) (12)

where kp is a tunable gain affecting how aggressively this
strategy attempts to force the state of charge to track bdes.
For this strategy, we took kp = 0.75.

3) Constant Relative Velocity Benchmark: This strategy
is predicated on the fact that moving at a consistent speed
would be optimal in the absence of environmental com-
plications from the flow and the solar resource (due to
the convex relationship between relative velocity and power
expended over the relevant speeds). For this reason, we
choose three speeds: vtarget is the prescribed constant speed,
vb,min is the minimum speed required to maintain position
(see equation (10) with ||⃗vmin|| = 0), and vb,max is the
maximum allowed relative velocity based on the limits of
the ASV. In implementing this strategy, we choose which
speed to command based on the following law:

vb =

{
vb,max if b ≥ bthresh

max(vtarget,vb,min) if b < bthresh
(13)

where bthresh is a battery threshold above which the ASV is
commanded to go the maximum velocity in order to reduce
the possibility of overcharging the battery. For this strategy,
we chose this value to be 90% of the total battery capacity.

4) Constant Speed Infinite Battery Benchmark: For our
final benchmark, we consider a nonphysical upper bound on
the constant-velocity performance of the system by removing
battery constraints (essentially modeling an infinitely large
battery). We then tune a speed vconst such that at the end
of a simulation, the terminal battery level is the same as the
initial battery level for an ASV moving at vconst for the entire
simulation. For this strategy, we computed vconst = 2.2m/s.
The control law is then:

vb = vconst (14)

While this isn’t physically possible, it provides a benchmark
for the best possible handling of the solar resource. Perform-
ing better than this benchmark is only possible with control
intelligently accounting for the flow environment through a
variable-velocity strategy.
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Fig. 7: Total distance traveled. Note that the Infinite Battery
Benchmark Strategy represents a non-tight upper bound on
achievable performance, whereas the Const. Relative Veloc-
ity 1.3 m/s requires precise knowledge of the flow field.

IV. RESULTS AND DISCUSSION

Total distance traveled and state of charge trajectories from
simulations of each strategy operating a 20-day long mission
are displayed in Fig. 7 and Fig. 8 respectively. The simulation
was conducted with the boat and environment model updated
on 1-minute time-steps.

As can be seen from the results, the strategies utilizing
MPC outperform the benchmarks where the battery is con-
strained. This can be attributed to the fact that the MPC
formulation allows for improved allocation of the battery
resource to account for times where an area of high flow
must be traversed and for times when there is a limited solar
resource.

Another metric for the performance of the MPC-based
strategies are their performance relative to the constant speed
infinite battery benchmark. The constant speed infinite bat-
tery benchmark represents the upper bound on the constant-
velocity performance of the system by removing the battery
constraints, thus representing an optimal utilization of the
battery resource across the mission period. From Fig. 7,
we see that the MPC strategies are able to nearly match
the performance of the benchmark. This shows that the
MPC strategies are able to intelligently allocate their battery
resource to maximize performance.

In addition to Fig. 7, Fig. 8 provides insight into the battery
usage of each strategy. From this, we can see that the MPC
strategies consistently utilize large amounts of the battery
resource, as opposed to the benchmarks, which are more
conservative in their battery usage. An interesting character-
istic of each MPC strategy to note are their allocation of
battery prior to day 10, which marks a period of low solar
irradiance and high flow magnitude. Each MPC strategy is
able to allocate enough battery to traverse this “adverse”
region without sacrificing performance by allowing for a high
state of charge once the adverse region has been traversed.

Fig. 8 further provides insight into the performance of
each MPC strategy. We can see that the MPC formulation
with a scheduled reward to go has a more conservative
utilization of battery when compared to the baseline reward
to go implementation of MPC. As a result, this strategy
underperforms the other MPC strategies. We further see that

the implementation of MPC utilizing a penalty on deviating
from a prescribed state of charge more aggressively utilizes
battery, which reduces operational effectiveness in adverse
regions. As such, we find that the MPC implementation
with the baseline reward to go effectively manages battery
utilization so as to maximize distance traveled.

Finally, Figs. 9 and 10 provide a depiction of the flow
speed and direction over the course of a simulation, for
the MPC strategy with the baseline reward to-go. Note that
the flow direction is taken relative to the ASV, with a 0-
degree direction representing a following sea and a +/- 180
degree direction representing a head sea. The observed 180-
degree switching behavior arises due to the transect pattern
prescribed in Fig. 5. In these (and all) of the simulations,
the flow variables are largely governed by spatial variations,
as the ASV repeatedly crosses the Gulf Stream jet (i.e., the
strongest portion of the Gulf Stream) several times over the
duration of the simulation, whereas time scales of the Gulf
Stream are on the order of several days.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we developed an MPC-based velocity tra-
jectory controller for persistent Gulf Stream exploration
using a solar-powered ASV. The proposed controllers were
compared against various closed-form heuristic benchmarks.
Simulation results, which were based on an ERA-Interim
solar resource model and a MAB-SAB-ROM ocean current
model, show that the proposed MPC-based velocity trajec-
tory controllers enable the ASV to traverse a larger distance
during the mission period as opposed to the benchmarks.
This can be attributed to the MPC-based velocity trajec-
tory controllers’ ability to estimate long-term performance
through an appropriately designed terminal reward function.

This work represents a complement to our previous work
in [11]. While the previous work explored path optimiza-
tion for a constant commanded velocity, this work assumes
a prescribed path and optimizes the commanded velocity.
Moving forward, we seek to combine the path and velocity
optimization strategies presented in these works to present a
unified persistent path and velocity planner for spatiotempo-
rally varying environments.
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