
ar
X

iv
:2

30
4.

02
57

8v
1 

 [
cs

.R
O

] 
 5

 A
pr

 2
02

3

Sensor-based Planning and Control for Robotic Systems:

Introducing Clarity and Perceivability

Devansh R. Agrawal, Student, IEEE, Dimitra Panagou, Senior Member, IEEE

Abstract— We introduce an information measure, termed
clarity, motivated by information entropy, and show that it
has intuitive properties relevant to dynamic coverage control
and informative path planning. Clarity defines the quality of
the information we have about a variable of interest in an
environment on a scale of [0, 1], and has useful properties for
control and planning such as: (I) clarity lower bounds the
expected estimation error of any estimator, and (II) given noisy
measurements, clarity monotonically approaches a level q∞ < 1.
We establish a connection between coverage controllers and
information theory via clarity, suggesting a coverage model that
is physically consistent with how information is acquired. Next,
we define the notion of perceivability of an environment under a
given robotic (or more generally, sensing and control) system, i.e.,
whether the system has sufficient sensing and actuation capabil-
ities to gather desired information. We show that perceivability
relates to the reachability of an augmented system, and derive the
corresponding Hamilton-Jacobi-Bellman equations to determine
perceivability. In simulations, we demonstrate how clarity is a
useful concept for planning trajectories, how perceivability can
be determined using reachability analysis, and how a Control
Barrier Function (CBF) based controller can dramatically reduce
the computational burden.

I. INTRODUCTION

Robots are often deployed to explore unknown or unstruc-

tured environments, e.g., ocean gliders perform data collection

for remote sensing, or aerial robots search for targets in a

disaster response. In this paper, we establish two concepts:

clarity and perceivability, to capture information acquisition

and show how it can be used to design informative controllers.

Information theory has long been used in robotic path

planning. Informative Path Planning (IPP) seeks to design tra-

jectories that maximize the ‘amount of information’ collected

subject to budgetary constraints such as total energy or total

time [1]. ‘Information’ is measured in many ways, including

entropy/mutual information [2], [3], Fisher Information [4],

through the number of unexplored cells/frontiers [5], [6], the

area of Voronoi partitions [7], [8], or Gaussian Processes [9],

[10]. Various techniques to solve IPP have been proposed,

including grid/graph-search techniques and sampling-based

techniques [2], [3], [11], [12]. While useful for trajectory

generation, such methods cannot quantify whether information

can be gathered in the first place.

The main objective in this letter is to answer the following

two questions: Given a platform (e.g., a robot) with onboard

sensors, and an environment in which information is to be

collected, (1) Does the overall system have sufficient actuation

and sensing capabilities to gather information in a specified
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time, and (2) what are optimal control strategies to collect the

information?

To address these, we introduce the notion of clarity as

a measure of the quality of information possessed about a

variable m. Clarity about a random variable m, denoted q,

lies in [0, 1], where q = 0 corresponds to the case where m
is completely unknown, and q = 1 to the case where m is

perfectly known in an idealized (noise-free) setting.

As a first contribution, we show that if m is estimated using

a Kalman Filter, the rate of change of clarity has a similar

structure and response to one assumed in dynamic coverage

controllers [13]–[15]. This establishes certain optimality prop-

erties for dynamic coverage control, rather than being viewed

as a heuristic approach to exploration. From an information

theoretic perspective, clarity of m is injective wrt differential

entropy m, but is bounded between [0, 1] instead of [−∞,∞],
with dynamics that are well defined at both ends q = 0, 1.

This is computationally easier to handle, akin to the difference

between reciprocal and zeroing CBFs [16].

With the notion of clarity at hand, we then define perceiv-

ability, which aims to capture the maximum clarity that can

be achieved in a fixed time by a given sensing system (robot

dynamics and sensory outputs). We show that perceivability

can be determined using reachability analysis, i.e., using a

Hamilton-Jacobi-Bellman (HJB) equation. This allows us to

compute optimal controllers that maximize clarity. Simulation

studies demonstrate the concepts of clarity and perceivability,

and we demonstrate how CBFs can alleviate the computation

burden in HJB based methods.

Notation: Let R,R≥0,R>0 be the set of reals, non-negative

reals, and positive reals respectively. R = R ∪ {±∞}. Let

S
n
++, S

n
+ denote the set of symmetric positive-definite and

symmetric positive-semidefinite matrices in R
n×n. The deter-

minant and trace of a square matrix P are denoted |P | , tr (P )
respectively. Let U(a, b) denote a uniform distribution on the

interval [a, b] ⊂ R
n. Let N (µ,Σ) denote a normal distribution

with mean µ ∈ R
n and covariance Σ ∈ S

n
++.

II. CLARITY

To aid the reader, we use a running example throughout

the paper, inspired by an oceanographic survey mission: we

wish to create a map of the ocean-surface temperature in a

specified region. The temperature measurements are obtained

by sensors onboard a surface vessel, or from thermal images

on an aerial vehicle, both subject to ocean currents or winds.

Since we need a suitable information metric, we propose

clarity, defined next.
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A. Definitions and Fundamental Properties

Definition 1. [17, Ch. 8] X is a continuous random variable

if its cumulative distribution F (x) = Pr(X ≤ x) is contin-

uous. The probability density function is f(x) = F ′(x). The

set where f(x) > 0 is the support set of X .

Differential entropy extends the notion of entropy for dis-

crete random variables (defined by Shannon [18]) to continu-

ous random variables:

Definition 2. [17, Ch. 8] The differential entropy h[X ] of a

continuous random variable X with density f(x) is

h[X ] = −
∫

S

f(x) log f(x)dx (1)

where S is the support set of X .

While differential entropy shares many of the same prop-

erties as discrete entropy [17, Sec. 2.1], there are some key

differences. For example, while discrete entropy lies in [0,∞],
differential entropy lies in [−∞,∞], i.e., entropy can be

negative. We define clarity as:

Definition 3. Let X be a n-dimensional continuous random

variable with differential entropy h[X ]. The clarity of X is

q[X ] =

(

1 +
exp (2h[X ])

(2πe)n

)−1

. (2)

The normalizing factor (2πe)n is introduced to simplify

some of the algebra, as demonstrated in the example:

Example 1. Consider X ∼ U(a, b), and Y ∼ N (µ, P ), where

a, b ∈ R, µ ∈ R
n, P ∈ S

n
+. The differential entropy and

clarity of X,Y are

h[X ] = log (b− a), h[Y ] = log
√

(2πe)n |P |

q[X ] =
1

1 + (b−a)2

2πe

, q[Y ] =
1

1 + |P | .

Next, we establish some fundamental properties of clarity.

Property 1. For any n-dimensional continuous r.v. X , A ∈
R

n×n, and c ∈ R
n,

q[X ] ∈ [0, 1] (clarity is bounded) (3)

q[X + c] = q[X ] (clarity is shift-invariant) (4)

q[AX ] 6= q[X ] (clarity is not scale-invariant) (5)

Proof. Of (3): Since h[X ] ∈ R, q[X ] = 1/(1 + s) for some

s ∈ [0,∞], i.e., q[X ] ∈ [0, 1].
Of (4), (5): Follows from [17, Th. 8.6.3] (h[X+c] = h[X ]),

and [17, Th. 8.6.4] (h[AX ] = h[X ] + log |a|).

In information gathering tasks, we seek to design trajecto-

ries that minimize the estimation error: Let X be a random

variable of any distribution with clarity q[X ]. Let X̂ be any

estimate of X , and E[(X − X̂)(X − X̂)T ] be defined as the

expected estimation error. In Theorem 1, and Cor. 2 we show

that clarity bounds the expected estimation error: a necessary

condition for expected estimation error to approach 0 is that

clarity must approach 1.

Theorem 1. For any n-dimensional continuous random vari-

able X and any X̂ ∈ R
n, the determinant of the expected

estimation error is lower-bounded as
∣

∣

∣
E[(X − X̂)(X − X̂)T ]

∣

∣

∣
≥ 1

q[X ]
− 1, (6)

with equality if and only if X is Gaussian and X̂ = E[X ].

Proof. Following the same arguments as in [17, Th. 8.6.6],
∣

∣

∣
E[(X − X̂)(X − X̂)T ]

∣

∣

∣
≥ min

X̂∈Rn

∣

∣

∣
E[(X − X̂)(X − X̂)T ]

∣

∣

∣

=
∣

∣E[(X − E[X ])(X − E[X ])T ]
∣

∣ = |var(X)|
and since a Guassian distribution has the greatest entropy of

a given variance [17, Th. 8.6.6],

∣

∣

∣
E[(X − X̂)(X − X̂)T ]

∣

∣

∣
≥ e2h[X]

(2πe)n
=

1

q[X ]
− 1.

Corollary 2. For any 1-dimensional continuous random vari-

able x and any x̂ ∈ R, the expected estimation error is lower

bounded by

E[(x − x̂)2] ≥ 1

q[x]
− 1 (7)

with equality if and only if x is Gaussian and x̂ = E[x].

Proof. Use Thm. 1 with P ∈ S
1
++ =⇒ |P | = P .

B. Clarity and Coverage Control

Next, we demonstrate the connection between clarity and

coverage control. Consider the system

ẋ = f(x, u) (8)

where x ∈ X ⊂ R
n is the system sate, u ∈ U ⊂ R

m is the

control input, and f : X × U → R
m defines the dynamics.

The problem in coverage control is to design a controller π :
X → U for the system (8) such that closed-loop trajectories

gather information over a domain D ⊂ X . As in [13], let

c = c(t, p) denote the ‘coverage level’ about a point p ∈ D
at time t. [13] assumes the coverage level increases through

a sensing function S : X × D → R (positive when p can be

sensed from x, and 0 else), and coverage decreases at a rate

α : D → R≥0. This results in the model

ċ = S(x, p)(1 − c)− α(p)c. (9)

In [14], [15] the α term is ignored, and a point p is said to

be ‘covered’ if c(t, p) reaches a threshold c∗.

However, given specifications on the robot, sensors, and

the environment, it is not clear how to systematically define

S, α, c∗. [13], [15] resort to heuristic methods.

In many practical scenarios, measurements are assimilated

using a Kalman Filter. In principle, the coverage dynamics

should reflect the information gathering mechanism, i.e., the

quality of information as the environment is estimated using

the Kalman Filter. In deriving the clarity dynamics, final result

in (12), we will notice a similarities with (9).



Consider the simplest scenario, where we want to estimate

a scalar variable m. We assume m is a stochastic process:

ṁ = w(t), w(t) ∼ N (0, Q), (10)

y = C(x)m + v(t), v(t) ∼ N (0, R(x)), (11)

where m ∈ R is the quantity of interest. Given the robot is at

a state x, the (scalar) measurement obtained is y ∈ R, and can

be perturbed by some measurement noise v(t) ∼ N (0, R(x)).
Notice that C(x), R(x) are state dependent, emphasizing that

the quality of the measurements of m can depend on the

robot’s state x. For simplicity, assume the state x is known

exactly. The following demonstrates the setup:

Example 2. Let x be the quadrotor’s state, with position

xpos ∈ R
2 and altitude xalt. The quadrotor uses a downward

facing thermal camera with half-cone angle θ to measure the

ocean’s temperature m at a location p. Then C(x) is

C(x) =

{

1, if ‖xpos − p‖ ≤ xalt tan θ,

0, else

and (if the measurement variance is state-independent),

R(x) = R0 for some known R0. The fact that the ocean

temperate can change stochastically is reflected by (10).

Notice that the subsystem (10), (11) satisfies the assump-

tions of linear-time varying Kalman Filters [19, Ch. 4], since

for any given trajectory x(t), the measurement model is equiv-

alent to y = C(t)m + v(t), where C(t) = C(x(t)) by slight

abuse of notation. Therefore, the estimate has distribution

N (µ, P ), where µ, P evolve according to:

µ̇ = PC(x)R(x)−1(y − C(x)µ), Ṗ = Q− C(x)2

R(x)
P 2.

where P ∈ R>0 is the variance of the estimate. Since the

clarity of a scalar Gaussian distribution is q = 1/(1 + P ),

q̇ =
∂q

∂P
Ṗ =

−Ṗ

(1 + P )2
=

−1

(1 + P )2

(

Q− C(x)2

R(x)
P 2

)

and therefore the clarity dynamics are

q̇ =
C(x)2

R(x)
(1 − q)2 −Qq2. (12)

Remark 1. Comparing (9) with (12), one may note that their

structure is remarkably similar. Clarity and coverage increase

due to the first term, and decrease due to the second. However,

(12) is nonlinear wrt q. Thus, although (9) has the right

intuitive characteristics to describe ‘coverage’, (12) has the

correct dynamics corresponding to information gathering, i.e.,

the rate of improvement of the estimate.

Equation (12) yields further insight. Clarity decays at a rate

−Qq2, i.e., related to the stochasticity of the environment.

Furthermore, the incremental value of a measurement de-

creases as the clarity increases: C(x)2(1−q)2/R(x) decreases

as q increases. In other words, although every additional

measurement increases clarity, there are diminishing returns,

quantified by (12).

Although nonlinear, (12) has closed-form solutions, since it

is an instance of a (scalar) differential Riccati equation [20,

Sec. 2.15]. For constant C(x) = C,R(x) = R, if C,R,Q > 0,

the solution is

q(t) = q∞

(

1 +
2γ1

γ2 + γ3e2kQt

)

, (13)

where k = C/
√
QR, q∞ = k/(k + 1), γ1 = q∞ − q0, γ2 =

γ1(k − 1), γ3 = (k − 1)q0 − k.

As t → ∞, clarity monotonically approaches q∞ < 1
for Q,R 6= 0. Thus if m is a stochastic process with non-

zero variance, and the measurements have non-zero variance,

perfect clarity (q = 1) cannot be attained.

The vector case also has the same structure:

Theorem 3. Let m ∈ R
nm be the environment state vector,

and y ∈ R
q be the sensed outputs. Suppose the environment

and measurement models are

ṁ = Am+ w(t) w(t) ∼ N (0, Q) (14)

y = C(x)m + v(t) v(t) ∼ N (0, R(x)) (15)

with Q ∈ S
nm

++, and R : X → S
q
++. Assuming P (t) ∈ S

nm

++

for all t,1 and a prior m ∼ N (µ, P ), then

Ṗ = AP + PAT +Q− PC(x)TR(x)−1C(x)P (16)

q̇ = q(1 − q)(tr (C(x)TR−1C(x)P ) − tr (2A+ P−1Q)).
(17)

Proof. Eq. (16) is the standard covariance update for the

Kalman Filter. To derive (17), notice the clarity of a multi-

variate Gaussian is q = 1/(1 + |P |). Therefore,

q̇ = − 1

(1 + |P |)2
d

dt
(|P |)

Since P ∈ S
nm

++, it is is invertible. Using Jacobi’s formula:

q̇ =
− |P | tr (P−1Ṗ )

(1 + |P |)2 = q(1 − q) tr (−P−1Ṗ )

since |P | /(1 + |P |)2 = q(1 − q). Substituting in (16), and

simplifying, we arrive at (17).

Again, we see the same structure: when C(x) 6= 0,

the clarity increases at a rate proportional to

tr (C(x)TR(x)−1C(x)P ), and decreases at a rate proportional

to tr (P−1Q). Furthermore, since clarity dynamics are

independent of y, for trajectory planning purposes we can

consider the deterministic (and fully known) system

Ẋ = f̃(X,u), q̇ = g(X, q) (18)

where X = [xT , vec(P )T ]T is an extended state.

III. PERCEIVABILITY

In this section, we introduce the concept of perceivability,

which measures the following: given a robot with certain

sensing and actuation capabilities, can the robot’s motion over

a finite time achieve a desired level of clarity with the collected

sensory data? Formally,

1This is a standard assumption in Kalman filtering, amounting to an
assumption on the observability of m. See [21, Sec. 11.2] for details.



Definition 4. A quantity m ∈ R that evolves according to (10)

is perceivable by the system (8, 11) with clarity dynamics2

g : X × [0, 1] → R, to a level q∗ ∈ [0, 1] at time T from an

initial state x0 ∈ X and clarity q0 ∈ [0, 1], if there exists a

controller π : [0, T ] → U s.t. the solution to
[

ẋ
q̇

]

=

[

f(x, π(t))
g(x, q)

]

,

[

x(0)
q(0)

]

=

[

x0

q0

]

(19)

satisfies q(T ) ≥ q∗.

We define the set of initial conditions from which m is

perceivable as the perceivability domain:

Definition 5. The (q∗, T )-Perceivability Domain of a quantity

m ∈ R (that evolves according to (10)) by the system (8, 11)

is the set of initial states x0 and initial clarities q0 such that

m is perceivable to a level q∗ at time T :

D(q∗, T ) =
{

(x0, q0) : ∃π : [0, T ] → U ,
ẋ = f(x, π(t)), q̇ = g(x, q),

x(0) = x0, q(0) = q0, q(T ) ≥ q∗
}

. (20)

Our key insight is that perceivability is fundamentally a

question of the reachability of the augmented system (19). As

with backward reachable sets, the perceivability domain can

be defined by a Hamilton-Jacobi (HJB) equation:

Theorem 4. Let V : [0, T ]×X × [0, 1] → R solve

∂V

∂t
+max

u∈U

(

∂V

∂x
f(x, u)

)

+
∂V

∂q
g(x, q) = 0, (21)

V (T, x, q) = q ∀x ∈ X , q ∈ [0, 1]. (22)

Then the (q∗, T )- perceivability domain of m ∈ R (that

evolves according to (10)) by the system (8, 11) is

D(q∗, T ) =
{

[xT
0 , q]

T : V (0, x0, q0) ≥ q∗
}

. (23)

Proof. Let L([t, T ],U) be the set of piecewise continuous

functions π : [t, T ] → U . Define V as the maximum clarity

reachable from (t, x, q):

V (t, x(t), q(t)) = max
π∈L([t,T ],U)

q(T ) s.t. (19)

By the principle of dynamic programming, for any δ > 0,

V (t, x(t), q(t)) = max
π∈L([t,t+δ],U)

V (t+ δ, x(t+ δ), q(t+ δ))

Using a Taylor expansion about δ = 0, as δ → 0,

V (t, x(t), q(t)) = max
u∈U

(

V (t, x(t), q(t)) +
∂V

∂t
δ

+
∂V

∂x
f(x, u)δ +

∂V

∂q
g(x, q)δ

)

which simplifies to (21).

As with standard reachability theory, once the HJB equa-

2When using a Kalman Filter to estimate m, g is as in (12). In general,
other estimators could be used, and will lead to different expressions for g.

T = 0 s

T=10 s

T=20 s

T=40 s

T=80 s
T=160 s

T=320 s
T*=57.4 s

m
ax 

cl
arit

y/
kJ

Fig. 1. Clarity gained as a function of the measurement time. First, the
clarity increases rapidly (between T = 30 to 40 s). As the level of clarity
approaches q∞ (red dashed line), the rate of clarity accumulation decreases.
The maximum clarity/energy ratio is (green dashed line) is achieved at T ∗ =
57.4 s. Parameters: R = 20.0, Q = 0.001, p0 = 36 kJ, p1 = 0.2 kW.

tion (21, 22) has been solved, the optimal controller is

π(t, x, q) = argmax
u∈U

(

∂V

∂x
f(x, u)

)

(24)

IV. SIMULATIONS AND APPLICATIONS

A. Energy-Aware Information Gathering

3 This example demonstrates that the incremental value

from measurements decreases as clarity increases. Consider

the quadrotor tasked with measuring the ocean temperature.

It must fly to a target location, spend T seconds collecting

information, and fly back to the start. As T increases, more

measurements are made and hence greater clarity is achieved,

but at the cost of additional energy use. We wish to determine

optimal T to maximize clarity and minimize energy. We model

the energy cost as E(t) = p0 + p1T , where p0 is the energy

cost of flying to and back from the target, p1 is the power

draw at hover. The clarity dynamics are as in (12).

The pareto front of q(T ) against E(T ) is depicted in

Fig. 1. The diminishing value of measurements is clearly

visible, as between T ∈ [160, 320] s, the clarity only increases

by 2.6%, but increases by 49.7% for t ∈ [10, 20] s. To

maximize the clarity/energy ratio, the quadrotor should collect

measurements for T ∗ = 57.4 seconds (green tangent).

B. Coverage Control based on Clarity

Next, we demonstrate how clarity can be used in ergodic

coverage controller of [23]. The robot is exploring a unit

square, but certain regions have a greater target clarity than

others, as labelled in Fig. 2a. The challenge with ergodic

controllers is defining the fraction of time spent at each

position p, and uniform allocation is used as a heuristic. Since

the target clarity has been specified, we can invert (13) to

determine the appropriate time allocation.

In Fig. 2, we compare the behaviour of three coverage

controllers: (A) a greedy controller drives to a point with

maximum (qT (p) − q(t, p)) and hovers at p until qT is

3All code and videos are available at [22].
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Fig. 2. Coverage Controllers. (a-c) Snapshots of three controllers exploring a square region. The target clarity qT (p) is different in different regions as
labelled in (a). (d) Plot of the mean(q(t, p)− qT (p)) against t for each controller. Notice that using the proposed method, the mean clarity error is close to
0 for t ∈ [20− 35] seconds, and only increases later, when the entire region has higher clarity than the targets specified.

reached, (B) the ergodic controller in [23] with a uniform

target distribution, and (C) the same ergodic controller but with

a target distribution based on clarity. The proposed method

brings the mean of (q(t, p) − qT (p)) to 0 rapidly, and does

not overshoot like controller B. Beyond t = 35, most cells

have reached the target clarity, and since the robot continues

to explore, q(t, p) increases further.

C. Perceivability and Optimal Trajectory Generation

Here we demonstrate how the perceivability can be deter-

mined using (21), (22). Consider a boat tasked with collecting

information that can only be measured from a specified

region (green square in Fig. 3b). To highlight the importance

of actuation capabilities on perceivability, we consider two

models, a single integrator:

ẋ1 = u1 + wx(x), ẋ2 = u2 + wy(x)

with u1, u2 ∈ [−2, 2] m/s, and a Dubins Boat:

ẋ1 = v cosx3 + wx(x), ẋ2 = v sinx3 + wy(x), ẋ3 = u

where v = 2 m/s, and u ∈ [−1, 1] rad/s. For both the ocean

current is wx(x) = max(0, 3x2), wy(x) = −0.5 m/s. Thus,

neither vehicle has sufficient control authority to remain within

the sensing range. For both vehicles the sensing model is as

in (12), with C(x) = 1 when x is in the green square and

C(x) = 0 elsewhere, R(x) = 1.0, Q = 0.001.

To determine the perceivability domain, the backwards

reachability set of (19) is computed using [24], [25]. Fig. 3a

shows the perceivability domain for the single integrator. The

optimal controller (24) is used to drive both vehicles from

the same initial condition, and the resulting trajectories are

plotted in Fig. 3b. Due to the ocean currents, both vehicles

need to do loops to acquire clarity. Clarity is plotted against

time in Fig. 3c, and we see that the single integrator is able to

reach q(T ) ≥ q∗, but Dubins boat is not. Despite having the

same sensing capabilities, the perceivability is different due to

different actuation capabilities.

Computing the 10-second perceivability domain took

450 seconds on a Macbpoook Pro (i9, 2.3GHz, 16GB). While

prohibitively slow for online applications, V can be precom-

puted offline. Future work will explore fast trajectory design

techniques, and consider safety or energy constraints using

tools akin to RIG [1], or CBFs, as demonstrated next.

D. CBF-based Trajectory Generation

If a CBF [16] can be found for a system, one does not need

to solve (21). Consider a 6D planar quadrotor [26]:

ẍ1 = u1 sinx3/m, ẍ2 = u1 cosx3/m− g, ẍ3 = u2/J

where x1, x2 is the position of the quadrotor in the vertical

plane, and x3 is the pitch angle. m, g, J are the mass,

acceleration due to gravity, and moment of inertia of the

quadrotor. The quadrotor is attempting a precision landing,

using onboard sensors to determine the landing spot. To

prevent the quad from descending too quickly, we impose the

constraint x2 ≥ 2σ, where σ is the std of the estimated landing

site. Using σ2 = 1/q − 1, this reads

S = {[xT , q]T : h(x, q) = q − 4/(4 + x2
2) ≥ 0}

where h is a CBF of relative degree 2 for the planar quadrotor

system. Fig. 4 shows the trajectories with and without the

CBF-QP controller [27]. The CBF controller slows down to

collect sufficient quality of information before landing. We

attempted to solve the same problem using (21), but the since

the system is 7D (6D for x, 1D for clarity), it took 480 s to

compute the 0.05 s perceivability domain on a coarse grid.

Using a slightly finer grid required over 60GB of RAM,

and MATLAB crashed. In contrast, the CBF-QP controller

computes safe control inputs in under a 1 ms.

V. CONCLUSION

In this paper we have introduced the concepts of clarity

and perceivability. While clarity is simply a redefinition of

entropy, we show an interesting connection between coverage

control and information theory through clarity. Furthermore

the algebraic simplicity of expressions involving clarity make

it intuitive for control design. We remark that although clarity

dynamics of the Kalman Filter are nonlinear, closed form

solutions exist. We defined perceivability of an environment

as the ability for a sensing and control system to collect

information, measured in terms of the clarity that can be

gained. This allows us to interpret and quantify the information

gathering capabilities of a system in terms of reachability
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analysis, a well-established field with a large set of mathe-

matical and software tools. In the future, we hope to develop

computationally-efficient tools to analyze perceivability.
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