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Abstract— The Gulf Stream, which comes within 100 km
of the United States coastline in both the Florida Straits and
the vicinity of Cape Hatteras, is estimated to possess over 160
TWh/year of technical energy capacity. To better understand
the behavior of the Gulf Stream, whose flow resource varies
in both space and time, a relatively sparse network of fixed
acoustic Doppler current profilers (ADCPs) and shore-mounted
high-frequency radar units have been supplemented by more
granular but infrequent boat transect runs and undersea glider
deployments. Collectively, these measurements provide highly
granular data with respect to either time or space, but not both.
This work represents part of a comprehensive effort to evaluate
use of a solar-powered autonomous surface vehicle (ASV) fleet
to supplement existing observational capabilities. The proposed
solar-powered ASV can provide data with high spatial and
temporal granularity, but comes with the challenge of optimally
planning its mission in an adaptive manner. To address this
challenge in this work, we propose a multilevel controller that
fuses the A* search algorithm with an upper level waypoint
selector and lower level heading control. Focusing on a critically
important mission domain adjacent to Cape Hatteras, and
relying on a Mid-Atlantic Bight, South Atlantic Bight Regional
Ocean Model (MAB-SAB-ROM), we compare the performance
of our proposed algorithm against several competing strategies.
We demonstrate a significant performance improvement in
terms of a dynamic coverage metric, both in comparison to
competing strategies and to the existing observational network.

I. INTRODUCTION

The Gulf Stream possesses over 160 TWh/year of techni-
cal energy capacity in the region between Florida and North
Carolina [1]. This has led to millions of dollars in research
aimed at characterizing the spatial and temporal variations
in the Gulf Stream profile, including the North Carolina Re-
newable Ocean Energy Program, PEACH Project, Southeast
National Marine Renewable Energy Center, and other efforts.

To facilitate the process of characterizing spatiotemporal
variations in the Gulf Stream profile adjacent to Cape Hat-
teras, several observational tools have been employed. These
include moored acoustic Doppler current profilers (ADCPs),
boat-mounted ADCPs, a high-frequency radar network, and
undersea gliders. Specifically, the numerous (10+ in the
vicinity of Cape Hatteras, although not all concurrently)
moored ADCPs provide measurements of current velocity
vs. depth at 4-meter intervals, averaged over each hour
[2]. These provide excellent temporal and depth-wise spatial
resolution; however, they provide little capacity for spatial
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extrapolation to latitudes and longitudes where the stationary
ADCPs are not deployed. Boat transect runs, where research
vessels are equipped with their own ADCPs [3], provide
a spatially granular picture of the current profile over the
approximately 24-hour period of the transect run. However,
cost and personnel restrictions result in practical limitations
on how often these runs can be made; in practice, they are
typically made no more frequently than annually, leading
to very limited temporal resolution. To provide a more
granular spatiotemporal surface characterization of the Gulf
Stream, a high-frequency radar network has been deployed
[4], providing spatial data every 6 km and temporal data
every hour. However, these data are limited to surface
measurements and are not nearly as accurate as on-site
ADCP measurements. Finally, several undersea gliders have
been deployed for the purpose of providing longer-duration
spatiotemporal characterizations of the Gulf Stream at depth
[5], [6]. However, their limited velocities (usually less than
1 km/hour of velocity made good) limit the gliders to
downstream paths, and generally no more than approximately
one month in duration.

Despite the extensiveness of the Gulf Stream observa-
tional network, coverage remains spatiotemporally sparse.
Temporally granular measurements like moored ADCPs are
restricted to a fixed spatial location, and spatially granular
measurements like boat transects provide limited temporal
resolution. Persistent Autonomous Surface Vehicles (ASVs)
with downward-looking ADCPs, such as sailing drones [7],
wave gliders [8], and solar-powered ASVs [9], can help
to close the aforementioned gaps by providing continuous
operations over months at a time and a large spatial domain.
In this work, we will consider the SeaTrac SP-48 ASV shown
in Fig. 1. This system addresses the major concerns with the
variety of other solutions:

• The ASV is a mobile system allowing for measurements
across the entire domain.

• As an autonomous system, the ASV is significantly
cheaper to operate than a full research vessel.

• Unlike an undersea glider, the ASV’s solar panels enable
persistent missions, i.e. missions whose length is not
capped by physical constraints.

• The ASV’s approximately 4.5 knot peak velocity allows
it to make upstream progress outside of the center (“jet”)
of the Gulf Stream.

Although autonomous mobile systems address the main
shortcomings of other approaches, they introduce a control
challenge of their own: optimal real-time exploration of
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Fig. 1: SeaTrac ASV considered in this work [9] – Image
used with permission.

TABLE I: SeaTrac ASV Parameters

Variable Name Value Units
Length 4.8 meters
Beam 1.39 meters
Draft 0.42 meters

Weight 300 kilograms
Solar Panel Area 4.17 meters2

Brushless Motor 500 Watts
Battery Capacity 6.75 kWh

Top Speed 4.5 kts
Cruise Speed 3 kts

the mission domain in light of uncertain mobility arising
from the solar resource and spatiotemporally varying current.
The standard mechanism for controlling such systems is a
so-called line transect strategy, wherein the ASV executes
pre-planned “lawn mower”-type patterns in order to cover
the domain. While such strategies indeed traverse the full
mission domain, they do so without consideration of the
propulsive resource and other disturbances, leading typi-
cally to sub-optimal paths. Adaptive sampling literature has
examined more sophisticated information-driven planning
approaches for general oceanographic and atmospheric ob-
servation research, which have included dynamic coverage-
based strategies [10], [11], [12], exploration/exploitation
strategies [13], [14], [15], [16], [17], and other information-
driven approaches [18], [19], [20], [21] to account for the
spatiotemporally varying propulsion resource and distur-
bances in performing real-time planning.

It is the goal of the present research to apply information-
driven planning to the control of the SeaTrac SP-48 ASV
over a critical Gulf Stream mission domain. We propose a
hierarchical approach where an upper-level mission planner
computes a coverage-optimal target waypoint within the
global mission domain, and a lower-level planner computes
the path to that waypoint. Specifically, two implementations
of the lower-level planner are investigated here: (i) a direct-
to-point strategy and (ii) an A* algorithm [22]. We choose the
A* algorithm due to its use of heuristic parameters, enabling
us to tune the algorithm to prioritize the desired heuristics.
We compare the results of the proposed optimal hierarchical
strategy to a line transect approach, which is a commonly
used standard approach for observational studies.

II. MODELING

A. Dynamic Models

In this work, we consider the SeaTrac SP-48, which is
an autonomous, propeller-driven autonomous surface vessel
(ASV) with an on-board battery and solar panels for recharg-
ing. Given that the time scales of the environment greatly
exceed those of the boat dynamics, we assume direct control
of the boat’s velocity and heading according to the following
dynamic model:

ẋ = vb cosθb + v f (x,y, t)cosθ f (x,y, t)

ẏ = vb sinθb + v f (x,y, t)sinθ f (x,y, t)
(1)

where x and y are the two spatial states of the system, vb
and θb are the boat speed and boat heading (which serve as
control variables), respectively, and v f (x,y, t) and θ f (x,y, t)
are the spatiotemporally varying flow speed and direction
at the x,y location of the boat. We also model the state of
charge of the on-board battery, denoted by b, according to:

ḃ = ηsAsI(t)−ηmFD||~vb||2−Pe

FD =
1
2

ρAwCD||~v||22
(2)

where ηs is the solar panel efficiency, As is the solar panel
area, I(t) is the solar shortwave radiation (in units of W/m2),
ηm is the motor efficiency, FD is the drag force on the boat,
and Pe is the electrical power consumption of the on-board
electronic systems. The drag force, FD, is modeled as a
function of the wetted area, Aw, the drag coefficient, CD,
and the apparent current speed, ~v. In order to simulate a
system with these dynamics, it is necessary to characterize
the environmental variables I(t) and ~v f (x,y, t), in addition
to defining a control architecture for determining ~vb (which
characterizes both the heading and speed of the boat). The
former requires the selection of a meaningful mission domain
and the acquisition of appropriate solar and current data over
that domain. The latter requires the definition of a control
architecture. We discuss the approaches to each task in the
following sections.

B. Site Selection

For our mission domain, we selected the region shown in
Fig. 2 off the coast of North Carolina frequently occupied by
the Gulf Stream. This site was selected for two main reasons:

1) This section of the Gulf Stream has been shown to be
nearest to the shore, making it a promising location for
the future installation of marine hydrokinetic energy-
harvesting devices [2].

2) This section of the Gulf Stream has also been estimated
to possess the smallest level of spatial variability due
to so-called meanders. Nevertheless, existing observa-
tional data is insufficient to precisely pin down the
exact resource potential and variability in this area.
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Fig. 2: Mission domain and flow resource (at the surface, based on the MAB-SAB-ROM model) at 10 day intervals

C. Flow Data

To characterize the surface currents for the purpose of
driving our dynamic simulations, we have elected to use the
Mid-Atlantic Bight, South Atlantic Bight Regional Ocean
Model (MAB-SAB-ROM) [23]. This model outputs the flow
speed vector as a function of the 3-dimensional x,y,z location
and time (t). Because the SP-48 is an ASV, we only rely on
the surface elements of the data (i.e., those corresponding to
z = 0) to drive the dynamics of the ASV.

D. Solar Data

Solar data from the ERA-Interim model [24], available as
a function of x,y location and time (t), was used to drive the
ASV dynamics. Because the length scales of the solar data
are significantly longer than the dimensions of the mission
domain, we assume in this work that the solar resource is
temporally but not spatially varying.

E. Dynamic Coverage

The scientific objective of ASV-based Gulf Stream obser-
vations lies in the persistent coverage of a mission domain
whose characteristics (e.g., current velocity as a function
of depth and x,y location) are known to change over time.
Thus, for the development and subsequent validation of our
proposed control strategies, it is essential that we rely on a
metric that captures the quality with which the algorithms
achieve persistent coverage over the domain. To formulate
this metric, we turn to the concept of dynamic coverage,
discussed in [10], [12], and [25], which characterizes the
quality with which a mobile agent characterizes a domain.
This characterization typically depends on the definition
of a sensing function, which characterizes the quality of
information available at each point within the domain as a
function of the mobile agent(s)’s location(s) – points far away
from or unobservable by an agent will be associated with low
sensing function values.

In our work, we rely on a mathematical coverage model
with two key features that are representative of the problem
at hand:
• In the absence of available measurements near a partic-

ular x,y location, the coverage at that location gradually
declines.

• Coverage at a particular x,y location immediately in-
creases when the ASV passes sufficiently close to that

location, where the level of increase depends on the
proximity of the ASV to that x,y location.

These key characteristics are captured in our work through
the following discrete-time coverage model:

q(x,y, t +δ t) = max{q(x,y, t)−qlossδ t,S(d(t))} , (3)

where q is dynamic coverage, qloss is a flat coverage loss
rate, d(t) is the distance at time t between the ASV and the
point (x,y) about which coverage is being calculated, and
S(d(t)) is the sensing function, given by:

S(d(t)) = e−
d(t)2

2l2 . (4)

Here, l is a sensing length scale, which can roughly be
thought of as a radius within which the ASV is able to
accumulate coverage. Examining equation (3), one can see
that if the ASV is far from the (x,y) point under consid-
eration, coverage at that location will continue to decrease.
However, when the ASV gets sufficiently close to an (x,y)
point, coverage will once again increase in accordance with
the sensing function. Note that the left term in equation (3)
is always decreasing and the right term is bounded above by
1, so coverage at a point will also be bounded above by 1.

In this work, we are interested in maximizing a spa-
tially averaged measure of coverage over the entire mission
domain. To characterize this, we focus on the following
average coverage measure in both the control formulations
and subsequent analysis of the results:

J(t) =
1

nm

n

∑
i=1

m

∑
j=1

q(x(i),y( j), t), (5)

where n is the number of discrete points in the x dimension,
and m is the number in the y dimension. The quantity J(t)
represents the average coverage at time t, which is bounded
above by 1 and below by 0, with higher values representing
more coverage, i.e., more knowledge of the environment.

III. CONTROL FRAMEWORK
In this work, we propose a multi-level control strategy,

which can be depicted according to the block diagram in
Fig. 3. We compare two versions of the strategy: one in
which only an upper-level coverage-based waypoint selector
and path-following controller is implemented, and another
where the upper-level waypoint is fed into a coverage-based
A* controller that generates waypoints for the path-following
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Fig. 3: Block diagram of the control approach.

controller. Furthermore, each of these algorithms is compared
against a baseline line transect strategy (which executes pre-
scribed “lawn mower” patterns within the mission domain).
Descriptions of the individual blocks within the hierarchical
control structure are given in the following subsections.

A. Upper-Level Waypoint Selection

The upper level waypoint selector selects waypoints for
the vehicle according to the following optimization:

[xgoal ,ygoal ] = arg max
(xi,y j)∈D

(
∆q(xi,y j)

∆t(xi,y j)

)
(6)

where xi and y j are the decision variables belonging to the
mission domain D,

∆t(xi,y j) =

√
(xi− x0)2 +(y j− y0)2

vb

represents the estimated time for the boat to travel from
its current position (x0,y0) to (xi,y j), and ∆q(xi,y j) is an
estimate of the coverage that will be gained in traversing a
straight line path from (x0,y0) to (xi,y j) that is defined as
follows:

∆q(xi,y j) =
N

∑
k=1

(1−qk−Lk) (7)

where k is an index of each discrete point along the line
between the current position (x0,y0) and (xi,y j), N is the
total number of points on that line, qk is the current coverage
at the point with index k, and

Lk = d
qloss

vb

(
1− k

N

)
,

where qloss = 0.01 represents the coverage loss rate, d =√
(xi− x0)2 +(y j− y0)2 is the distance to the next potential

waypoint, and Lk represents the amount of coverage that will
be lost between the time the ASV reaches point k and the
time it reaches the next potential waypoint (xi,y j).

B. Local Coverage Maximization

The local coverage maximization controller utilizes the
A* search algorithm to minimize the cost associated with
traversal to the next waypoint. The A* cost associated with

traveling from point p1 = (x1,y1, t) to p2 = (x2,y2, t +δ t) is
defined as:

C(p1, p2) = k1
(
∆dgoal(p1, p2)

)
+ k2 (q(p2)+F) (8)

where ∆dgoal(p1, p2) represents the progress towards the final
waypoint, which represents the goal location for A*. It is
calculated as:

∆dgoal(p1, p2) = dgoal(p1)−dgoal(p2) (9)

dgoal(pi) =
√
(xgoal− xi)2 +(ygoal− yi)2. (10)

Returning back to equation (8), q(p2) represents the cov-
erage at point p2 and

F = v f ·
1− cos

(∣∣θ f −θtrue
∣∣)

2
represents the “usefulness” of the flow, where a flow di-
rection aligned with the direction towards the goal results
in a lower cost, and flow directions opposing the direction
towards the goal resulting in a higher cost. This is augmented
by the velocity of the flow, with high flow speeds in the
direction towards the goal being most desirable, and thus
resulting in a lower cost. The cost function is weighted
according to k1 and k2, where k1 = 0.05 represents the weight
on the term incentivizing progress towards final waypoint and
k2 = 0.95 represents a weight on the combined coverage and
flow cost metric.

C. Path-Following Control

The path-following control block in each of the candidate
control strategies is identical. The purpose of the block is to
take a waypoint from an upper-level waypoint selector and
speed from the upper-level speed controller as inputs and
control the boat heading in order to reach the next waypoint.
This controller selects the heading such that the true velocity
points directly at the next waypoint. In equation form:

θb = θtrue + sin−1
(

v f

vb
sin(θ f −θtrue)

)
(11)

where θb is the calculated boat heading, θtrue is the heading
towards the selected waypoint, θ f is the direction in which
the flow acts, and v f ,vb are the flow velocity and boat
velocity respectively. Note that this method would require
modification if the boat velocity was slower than the max-
imum flow velocity since there would be no heading angle
that would result in net progress towards a waypoint directly
upstream.

D. Speed Control

Each of the candidate control systems uses the same global
speed controller. The speed selected is in order to achieve
zero net charging or discharging of the battery over a period
corresponding to the traversal from one upper-level waypoint
to the next. This is calculated as:

vb = ||~v||2 = 3

√
(ηsAsIavg−Pe)ηmp

1
2 ρAwCD

(12)
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where each of the parameters is listed in Table II. This
equation was derived from the battery dynamics (2). Future
work will examine the incorporation of speed optimization
strategies that strategically charge or discharge the battery
according to the spatiotemporal forecast of the current and
temporal characteristics of the solar resource. Properly im-
plemented, this level of additional optimization is expected
to further improve coverage.

TABLE II: Speed Control Parameters

Variable Name Symbol Value Units
Solar Panel Area As 4.17 m2

Average Solar Shortwave Radiation Iavg 175 W/m2

On-board Electronics Pe 100 W
Wetted Area Aw 5.82 m2

Solar Panel Efficiency ηs 0.18 -
Motor + Propeller Efficiency ηmp 0.25 -

Drag Coefficient CD 0.0030 -

IV. RESULTS AND DISCUSSION

In this section, we compare the results of the hierarchical
coverage-based planning strategy of Section IV against two
comparison strategies, both of which can be represented as
simplified special cases of the block diagram of Fig. 3.

A. Comparison Strategy: Direct-to-Point Coverage-Based
Control

The direct-to-point coverage-based strategy represents a
simplified version of the control strategy of Fig. 3 for com-
parison purposes. Specifically, this variant of the controller
retains the global waypoint selection but does not include the
A*-based refinement. Instead, this strategy travels directly
between waypoints selected by the upper-level waypoint
selector. Thus, in this strategy, xi = xgoal and yi = ygoal .

B. Comparison Strategy: Line Transect Strategy

The transect strategy represents our baseline control strat-
egy. In the context of Fig. 3, the global waypoint selection
and A*-based refinement are replaced with pre-selected
waypoints (corresponding to xi and yi). These waypoints
are selected in order to traverse the mission domain in
an orderly manner, without regard for the spatiotemporally
varying current or temporally varying solar resource (much
like a lawnmower - see Fig. 8).

C. Simulation Results and Discussion

Spatially averaged coverage results from simulations of
each strategy operating a 2-month long mission are dis-
played in 4. The simulation was conducted with the boat
and environment model updated on 1-minute time-steps.
The coverage-based hierarchical and direct-to-point strate-
gies both outperformed the traditional line transect strategy
due to their ability to directly account for flow conditions.
Because each simulation starts with a coverage value of zero
at all points within the mission domain, the first several days
of each simulation are spent converging to a relatively steady
level of coverage. Beyond this point, fluctuations in the

Fig. 4: Comparison of spatially averaged coverage vs. time
under the three candidate control approaches.

Fig. 5: Comparison of spatially averaged coverage vs. time
under the three candidate control approaches with slower
boat velocity.

available solar resource and ocean current, along with periods
in which the ASV traverses a recently visited point, result in
persistent fluctuations. We examine the performance of the
three algorithms in terms of both the transient period and
(more importantly for persistent missions) the post-transient
period.

It can first be seen from Fig. 4 that the rate at which
coverage initially increases during the transient period is
higher with more sophisticated algorithms. Specifically, the
direct-to-point coverage-based strategy outperforms the line
transect baseline, and the hierarchical coverage-based strat-
egy outperforms both comparison strategies in terms of
convergence speed. After the transient period, both coverage-
based strategies continue to outperform the line transect
baseline. While the hierarchical coverage-based strategy con-
tinues to show overall superior performance when averaged
over the post-transient period, it is noteworthy that as cov-
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Fig. 6: Path taken by Hierarchical Coverage-Based Controller alongside map of coverage in mission domain at days 15 and
60.

Fig. 7: Path taken by Direct to Point Coverage-Based Controller alongside map of coverage in mission domain at days 15
and 60.

Fig. 8: Path taken by Line Transect Baseline alongside map of coverage in mission domain at days 15 and 60.

erage approaches 45%, the direct-to-point strategy is more
competitive with the hierarchical strategy during this phase.
It is hypothesized that the ability of the simpler direct-to-
point strategy to achieve similar performance over much of
the post-transient period suggests that the “regularity” of the
straight-line paths can lead to performance improvements in
the long term. Considering this long-term behavior is a topic
of ongoing research, either through model predictive control
or an added term to the A* algorithm corresponding to a
measure of path regularity.

To gain further insight into the relative performances of
the candidate control strategies, it is instructive to consider
(i) the actual paths traversed under each strategy, (ii) the
available solar and flow resources as a function of time
(noting that the 2D current velocity profiles at selected

“snapshots” in time are given in Fig. 2), and (iii) 2D coverage
profiles at selected “snapshots” in time under each strategy.
The paths traversed by the ASV are shown in Figs. 6,
7, and 8. As expected, the direct-to-point strategy engages
in sweeping straight-line motions between highly disparate
points in the domain, whereas the hierarchical strategy
engages in excursions when those excursions are deemed
beneficial for coverage. Temporal variation of the solar
resource, in conjunction with spatiotemporal variation in the
surface current velocity (available in discrete “snapshots”
in Fig. 2) helps to explain some of the dips in coverage
experienced during the post-transient period. Because of the
spatial variability in the current, along with the fact that
coverage improvement can only be attained when traversing
a “new” area (or one not recently traversed), the timing and
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extent of average coverage fluctuations will also depend on
the location of the ASV. Finally, Figs. 6, 7, and 8 show
a coverage map over the full 2D mission domain under
all three candidate control approaches, at two “snapshots”
in time. It can be seen here, at both snapshots in time,
that in addition to maintaining higher average coverage, the
hierarchical strategy does the best job of reducing the level
of coverage variability across the domain. Furthermore, areas
of extremely minimal coverage are small at each snapshot
in time. In contrast, the line transect strategy results in large
swaths of the mission domain having near-zero coverage at
both time instances.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we performed a data-driven characterization
of a hierarchical, coverage-based algorithm for persistent
Gulf Stream exploration using a solar-powered ASV. The
proposed algorithm was compared against a simplified direct-
to-point coverage-based approach and a standard line transect
approach. Simulation results, which were based on a MAB-
SAB-ROM model for the ocean current and an ERA-Interim
solar resource model, show that the hierarchical coverage-
based algorithm outperforms the comparison algorithms in
terms of (i) the attained average coverage level, (ii) the
convergence time to a “steady” coverage level, and (iii)
the consistency of coverage over the mission domain. Fur-
thermore, the direct-to-point coverage-based algorithm was
found to significantly outperform the line transect algorithm
and approach the performance of the hierarchical algorithm
over portions of the simulation. Future work will focus
on augmenting the proposed coverage-based approach with
an intelligent velocity planner that strategically charges
and discharges the battery in order to attain faster or
slower velocities than those achievable through the net-zero
charge/discharge approach employed in this work.
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