Autonomy Architectures for Safe Planning in Unknown Environments Under Budget Constraints

Code

Abstract

Mission planning can often be formulated as a constrained control problem under multiple path constraints (i.e., safety constraints) and budget constraints (i.e., resource expenditure constraints). In a priori unknown environments, verifying that an offline solution will satisfy the constraints for all time can be difficult, if not impossible. We present ReRoot, a novel sampling-based framework that enforces safety and budget constraints for nonlinear systems in unknown environments. The main idea is that ReRoot grows multiple reverse RRT* trees online, starting from renewal sets, i.e., sets where the budget constraints are renewed. The dynamically feasible backup trajectories guarantee safety and reduce resource expenditure, which provides a principled backup policy when integrated into the gatekeeper safety verification architecture. We demonstrate our approach in simulation with a fixed-wing UAV in a GNSS-denied environment with a budget constraint on localization error that can be renewed at visual landmarks.

Authors

Devansh Agrawal
Devansh Agrawal

Role: PhD Aerospace (2020 - 2025)

Now: Control Engineer @ Rotor

link / email /